Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Humans are Not Just Big Mice: Identifying Science’s Muscle-Scaling Problem
Scientific Advances

Humans are Not Just Big Mice: Identifying Science’s Muscle-Scaling Problem

By Kristin SamuelsonMar 20, 2023
Share
Facebook Twitter Email
A new study’s findings have significant implications across disciplines, including surgery, computational musculoskeletal modeling, muscle performance and rehabilitation, including predicting how a muscle will perform after a surgical procedure.

‘We shouldn’t simply multiply by body size to predict human properties’

In science, findings generated from studying small animals often are generalized and applied to humans, which are orders of magnitude larger.

A new study from scientists at Northwestern University Feinberg School of Medicine and Shirley Ryan AbilityLab, published in The Journal of Physiology, is the first to show that extrapolating such information to humans based on animal measurements generates incorrect predictions. It also is the first study to directly measure human muscle contractile properties.

The discovery occurred initially when researchers leveraged a unique surgical technique in which a human patient’s gracilis muscle (a large thigh muscle) was transplanted into the arm to restore elbow flexion after a brachial plexus injury. In the process, they were able to measure muscle properties and test architectural and scaling predictions directly — a rare opportunity because taking such measurements is quite invasive and must occur during extensive surgery that is being performed for other reasons. They found the gracilis muscle actually functions as if it has relatively short fibers acting in parallel — and not with long fibers, as previously thought based on traditional animal anatomical models. Scientists then replicated the results throughout the course of study.

Specifically, they established that human muscle fiber-specific tension is 24% smaller than the gold standard that has been used traditionally, as determined from small mammals. Additionally, they determined that the average gracilis optimal fiber length is about half of what had been understood to be the case based on detailed anatomical studies of muscles from cadavers.

“There’s a reason scientists study animals,” said senior study author Richard L. Lieber, PhD, professor of Physical Medicine and Rehabilitation and Neuroscience. “Direct measurements of human muscle contractile properties don’t occur because they require muscles to be cut out of the body. As a result, scientists must study animal muscles and then make predictions as they relate to humans by scaling numbers according to size.”

This study shows, for the first time, that such extrapolation is simply not accurate. The gracilis serves as a good test case because of its straightforward properties. Because its measurements weren’t accurately predicted, it’s likely measurements for all muscle systems are incorrect, according to the researchers.

“When extrapolating from mice to humans, some scaling laws work beautifully, such as when measuring cardiac output and blood pressure,” said Lieber, who also is the chief scientific officer at Shirley Ryan AbilityLab and senior research scientist at the Edward Hines Jr. VA Hospital. “However, through this study we’ve demonstrated that the same scaling principles don’t apply in muscle, and are in fact highly nonlinear. Moving forward, we shouldn’t conduct a mouse muscle study and then simply multiply by body size to predict human properties.” 

These findings have significant implications across disciplines, including surgery, computational musculoskeletal modeling, muscle performance and rehabilitation. For example, predicting how a muscle will perform after a surgical procedure is critical. 

Many procedures (e.g., tendon lengthening, tendon transfer, surgical release) alter muscle length and force. However, currently only musculoskeletal models — which are based on indirect measurement methods and extrapolate animal data to human sizes — can be used to predict surgical outcomes.

Lieber, for one, is not deterred by the study findings. 

“Discovering that our anatomical predictions for human muscle are wrong is big news for human science,” Lieber said. “It is critical that we, as scientists, continually test our assumptions. Now, this knowledge sets us on the path to better understand the performance, adaptation and rehabilitation potential of muscle.”

Neuroscience Physiology Press Release Research
Share. Facebook Twitter Email

Related Posts

Understanding How Hormones Influence Anemia

May 25, 2023

Groundbreaking Geneticist Delivers Epigenetics Lecture

May 24, 2023

CT Scan Best at Predicting Heart Disease Risk in Middle Age

May 23, 2023

Comments are closed.

Latest News

Celebrating Advances in Alzheimer’s Research and Clinical Care

May 26, 2023

Understanding How Hormones Influence Anemia

May 25, 2023

Groundbreaking Geneticist Delivers Epigenetics Lecture

May 24, 2023

CT Scan Best at Predicting Heart Disease Risk in Middle Age

May 23, 2023

Investigating the Benefits of Salt Substitutes in Elderly Patients

May 22, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230506_NM569
20230506_NM564
20230506_NM563
20230506_NM559
20230506_NM555
20230506_NM549
20230506_NM508
20230506_NM474
20230506_NM136
20230506_NM124
20230506_NM118
20230506_NM094

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.