Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Protein ‘Chaperone’ Plays Dual Role in DNA Replication
Scientific Advances

Protein ‘Chaperone’ Plays Dual Role in DNA Replication

By Will DossDec 20, 2021
Share
Facebook Twitter Email
Daniel Foltz, PhD, associate professor of Biochemistry and Molecular Genetics, was senior author of the study published in The EMBO Journal.

The protein UBR7 acts as a histone chaperone, regulating histone re-deposition at specific sites during DNA replication, according a recent study published in The EMBO Journal.

This protein was previously identified to regulate nucleotide metabolism, making UBR7 among the first proteins known to affect both processes, according to Daniel Foltz, PhD, associate professor of Biochemistry and Molecular Genetics, and senior author of the study.

“We’ve thought of these processes as co-incident but independent, however, this is the first mechanism where we can say they are somehow coupled,” Foltz said.

Cells undergoing proliferation — dividing and replicating— must replicate their DNA to provide a genetic template for the new cell. This  requires nucleotide synthesis and packaging of new DNA  into chromatin. Histone chaperone proteins ensure that new and old histones — spools around which DNA is looped — are correctly deposited, or recycled and re-deposited, respectively.

In the current study, Foltz and his collaborators examined the binding of UBR7, finding it bound to histones with a specific epigenetic marker. The marker, one that’s associated with gene promoters, is only ever attached to histones that had been packaged into chromatin — making UBR7 among the first histone chaperones known to regulate recycled histones, rather than fresh histones.

Generating cells without UBR7 prevented redeposition of these specific histones.

“If the cell marks a histone and then gets rid of it during replication, then it’s lost that epigenetic information,” Foltz said. “The cell has ways to ensure that you can put those modified histones right back, to ensure that information is retained. It’s a memory of the state of the gene before DNA replication.”

What makes UBR7 particularly interesting, according to Foltz, is that it already has a previously discovered function: regulating nucleotide metabolism. UBR7 interacts with proteins that form the basic building block of RNA and DNA, raising the possibility it serves a coordinating role for both processes.

“It might be a way for the cell to ensure that not only does it have enough building blocks to create DNA, but that it also has enough building blocks to build chromatin,” Foltz said.

In the future, Foltz and his collaborators said they plan to examine other histone chaperone proteins, searching for other dual-use proteins.

“This coordination probably involves other chaperones besides just UBR7,” Foltz said.

Ann Hogan, PhD, recent graduate from the Driskill Graduate Program in Life Sciences (DGP), was lead author of the study. Ali Shilatifard, PhD, the Robert Francis Furchgott Professor, chair of Biochemistry and Molecular Genetics, professor of Pediatrics, director of the Simpson Querrey Institute for Epigenetics and a member of the Robert H. Lurie Comprehensive Cancer Center; and Marc Morgan, DPhil, research assistant professor of Biochemistry and Molecular Genetics; were co-authors of the study.

This study was supported by National Institutes of Health grants R21HD078946 and R01GM143638, a Zell scholar grant from the Robert H. Lurie Comprehensive Cancer Center and the H-foundation.

Biochemistry and Molecular Genetics Genetics Research
Share. Facebook Twitter Email

Related Posts

Sex-Specific Mechanisms for Major Depressive Disorder Identified in Response to Dysregulated Stress Hormones

Mar 23, 2023

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

Comments are closed.

Latest News

Sex-Specific Mechanisms for Major Depressive Disorder Identified in Response to Dysregulated Stress Hormones

Mar 23, 2023

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

How ChatGPT Has, and Will Continue to, Transform Scientific Research

Mar 21, 2023

New Directions for HIV Treatment

Mar 21, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM651
20230317_NM610
20230317_NM569
20230317_NM537
20230317_NM331
20230317_NM323
20230317_NM316
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.