Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Uncovering Molecular Mechanisms Behind Cell Signaling
Scientific Advances

Uncovering Molecular Mechanisms Behind Cell Signaling

By Melissa RohmanAug 11, 2021
Share
Facebook Twitter Email
Sergey Troyanovsky, PhD, professor of Dermatology and of Cell and Developmental Biology, was senior author of the study in Proceedings of the National Academy of Sciences.

A study led by Northwestern Medicine investigators has identified the molecular mechanisms within protein complexes that promote cell-to-cell adhesion and communication, according to findings published in the Proceedings of the National Academy of Sciences.

Sergey Troyanovsky, PhD, professor of Dermatology and of Cell and Developmental Biology, was senior author of the study.

Cadherins and catenins are proteins that form multiprotein complexes, helping bind cells together and stabilize cell-cell interactions, thereby forming different tissues. Those complexes, called cadherin-catenin complex (CCC), form clusters, but exactly how other CCC-associated proteins are recruited into these clusters and how they affect the overall clustering process has up until now remained understudied, according to Troyanovsky.

Using mass spectrometry and cross-linking, a proteomics approach which involves chemically “linking” two or more neighboring molecules by a covalent bond, the investigators discovered that most CCC-associated proteins interact with CCCs outside of adherens junctions, or protein complexes that include cadherin receptors. Furthermore, structural modeling revealed that there is limited space for CCC-associated proteins to form clusters in the first place.

Next, the investigators analyzed two example CCC-associated proteins essential for cell polarity and cell proliferation, and found that each protein formed separate CCC-associated clusters.

A431 cells expressing Dendra2-tagged E-cadherin were briefly stained and then immediately imaged simultaneously in green and red channels.

The findings suggest that protein-driven CCC clustering plays a role in cell-to-cell adhesion, as well as enables cells to communicate with each other by synchronizing their signaling networks.

“Different proteins which associate with CCC can sort cadherin into different populations of CCC clusters, and that’s important because it’s actually a mechanism of how signaling units can be equalized in different cells,” said Troyanovsky, who is also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Troyanovsky said the findings may also improve the understanding of the intracellular mechanisms that give rise to skin diseases, as most skin diseases are caused by defects in cell-to-cell adhesion within the epidermis.

The work was supported by National Institutes of Health grants AR44016 and AR057992.

Cell and Developmental Biology Research
Share. Facebook Twitter Email

Related Posts

Shortage of Mental Health Professionals Linked to Increase in Youth Suicides

Jan 25, 2023

Understanding How Childhood Brain Tumors Develop

Jan 23, 2023

Medical School Establishes New Center for Psychiatric Neuroscience

Jan 19, 2023

Comments are closed.

Latest News

Changes in Medical School Leadership

Jan 26, 2023

Shortage of Mental Health Professionals Linked to Increase in Youth Suicides

Jan 25, 2023

Northwestern Medicine Scholars Program Inspires a New Generation of Physicians and Scientists 

Jan 24, 2023

Understanding How Childhood Brain Tumors Develop

Jan 23, 2023

Medical School Establishes New Center for Psychiatric Neuroscience

Jan 19, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
Feinberg_In_Vivo_20221209_tcrawford-24
Feinberg_In_Vivo_20221209_tcrawford-16
Feinberg_In_Vivo_20221209_tcrawford-14
Feinberg_In_Vivo_20221209_tcrawford-5
Feinberg_In_Vivo_20221209_tcrawford-6
Feinberg_In_Vivo_20221209_tcrawford-10
Feinberg_In_Vivo_20221209_tcrawford-8
Feinberg_In_Vivo_20221209_tcrawford-18
Feinberg_In_Vivo_20221209_tcrawford
Feinberg_In_Vivo_20221209_tcrawford-23
Feinberg_In_Vivo_20221209_tcrawford-25
Feinberg_In_Vivo_20221209_tcrawford-26

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.