Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Coaxing Hair Growth in Aging Hair Follicle Stem Cells
Disease Discoveries

Coaxing Hair Growth in Aging Hair Follicle Stem Cells

By Marla PaulJun 9, 2023
Share
Facebook Twitter Email

Softening stiff hair follicle stem cells with a microRNA regrows hair

Rui Yi, the Paul E. Steiner Research Professor of Pathology and professor of dermatology, was the corresponding author of the paper published in PNAS.

Just as people’s joints can get stiff as they age and make it harder for them to move around, hair follicle stem cells also get stiff, making it harder for them to grow hair, reports a new Northwestern Medicine study.

But if the hair follicle’s stem cells are softened, they are more likely to produce hair, the scientists found.

Northwestern scientists discovered how to soften up those stem cells to enable them to grow hair again. In a study in mice published this week in PNAS, the investigators report that they can soften the stem cells by boosting the production of a tiny RNA, miR-205, that relaxes the hardness of the cells. When scientists genetically manipulated the stem cells to produce more miR-205, it promoted hair growth in young and old mice.

“They started to grow hair in 10 days,” said corresponding author Rui Yi, PhD the Paul E. Steiner Research Professor of Pathology and professor of Dermatology. “These are not new stem cells being generated. We are stimulating the existing stem cells to grow hair. A lot of times we still have stem cells, but they may not be able to generate the hair.”

“Our study demonstrates the possibility of stimulating hair growth by regulating cell mechanics,” Yi said. “Because of the potential to deliver microRNA by nanoparticles directly into the skin, next we will test whether topically delivered miR-205 can stimulate hair growth first in mice. If successful, we will design experiments to test whether this microRNA can promote hair growth potentially in humans.”

This study was conducted in genetically engineered mouse models. The scientists used advanced microscopy tools, including atomic force microscopy, to measure the stiffness and two-photon microscopy to monitor cell behaviors.

Other Northwestern authors include Jingjing Wang, Yuheng Fu and Kathleen Green, PhD, the Joseph L. Mayberry, Sr., Professor of Pathology and Toxicology.

Yi and Green are also members of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

This study was funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases grants AR066703, AR071435, AR043380, AR041836 and P30AR075049 of the National Institutes of Health.

Dermatology Pathology Research
Share. Facebook Twitter Email

Related Posts

Mapping Neural Activity Patterns and Odor Perception  

Sep 28, 2023

Small, Implantable Device Could Sense and Treat Cancer

Sep 26, 2023

Gene Linked to Glioblastoma Stem Cell Self-Renewal and Immunosuppression

Sep 26, 2023

Comments are closed.

Latest News

Mapping Neural Activity Patterns and Odor Perception  

Sep 28, 2023

Lloyd-Jones Announces He is Stepping Down as Chair of Preventive Medicine

Sep 27, 2023

Small, Implantable Device Could Sense and Treat Cancer

Sep 26, 2023

Gene Linked to Glioblastoma Stem Cell Self-Renewal and Immunosuppression

Sep 26, 2023

Northwestern Simulation’s In Situ Training Tests Cardiac Arrest Response Teams

Sep 25, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230914_NM461
20230914_NM644
20230914_NM345
20230914_NM444
20230914_NM464
20230914_NM520
20230914_NM673
20230914_NM641
20230914_NM612
20230914_NM608
20230914_NM602
20230914_NM597

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.