Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Study Uncovers Mechanism Behind Primary Graft Dysfunction
Disease Discoveries

Study Uncovers Mechanism Behind Primary Graft Dysfunction

By Olivia DimmerNov 17, 2022
Share
Facebook Twitter Email
Ankit Bharat, MBBS, the Harold L. and Margaret N. Method Professor of Surgery, chief of Thoracic Surgery and co-senior author of the study published in Journal of Clinical Investigation.

Northwestern Medicine scientists have discovered the pathways through which autoantibodies – immune proteins that mistakenly attack a person’s own body – leak out of blood vessels and cause primary graft dysfunction in some lung transplant recipients, according to findings published in the Journal of Clinical Investigation (JCI).

Primary graft dysfunction (PGD) is a potentially lethal injury to fragile transplanted lungs that occurs in the first days after a transplant operation and affects more than half of lung transplant recipients. The condition is the leading cause of early post-transplantation morbidity and mortality.

In the study, mice were injected with lung-restricted autoantibodies (LRAs) prior to transplantation. Scientists then transplanted a single lung from an untreated mouse and observed the leakage of the LRAs out of vessels and into surrounding tissue – a process called extravasation – which led to rejection of the lung.

Building on previous Northwestern Medicine research which showed that the protein interleukin 1 beta (IL1B) can increase pulmonary vascular permeability and allow cellular extravasation, investigators compared rates of PGD in mice transplanted with donor lungs treated with IL1RA (an IL1 receptor antagonist) or donor lungs from mice genetically modified to modulate IL1-related immune and inflammatory responses. They found IL1B is necessary for the extravasation of LRAs.

In human patients, the investigators analyzed preexisting LRAs in 56 lung transplant recipients and found LRAs could independently predict PGD.

This discovery is already being applied to treat lung transplant patients, said Ankit Bharat, MBBS, the Harold L. and Margaret N. Method Professor of Surgery and chief of Thoracic Surgery and co-senior author of the study.

“We found out the specific pathways that are activated by these autoantibodies which results in a very profound primary graft dysfunction,” Bharat said. “We validated that in human patients, and the important thing is these mechanisms that we have discovered are clinically treatable by specific drugs that are already available and FDA-approved. So, for the first time, we have a specific treatment directed against primary graft dysfunction.”

Emilia Lecuona, PhD, research associate professor of Surgery in the Division of Thoracic Surgery, was co-senior author of the study.

Historically, Bharat said, treatments for PGD consisted of supportive treatments to buy time in hopes the problem would resolve on its own.

“I would like to emphasize the importance of collaboration between basic scientists like me and physicians who care for patients,” said Emilia Lecuona, PhD, research associate professor of Surgery in the Division of Thoracic Surgery and co-senior author of the study. “To be able to apply observations made on patients, ask ‘Why is this happening?’ and take that question and try and solve it in a research bench. I think it’s amazing.”

In the future, Bharat said he aims to develop a test to predict and prevent primary graft dysfunction.

“What we want to do is create a library of all these antigens specific to the different organs and then there can be a high-throughput test where you can take the sample of plasma of the recipient and try to react it to the panel of all the potential antigens that may be present in the lung or any organ to see if they will have primary graft dysfunction and if they do, we can immediately treat them,” said Bharat, who is also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

This study was supported by NIH grants HL145478, HL147290, and HL147575. The Northwestern University Flow Cytometry Core Facility and Center for Advanced Microscopy/Nikon Imaging Center (CAM) are generously supported by NCI CCSG P30 CA060553, awarded to the Robert H. Lurie Comprehensive Cancer Center.

Patient Care Pulmonology Research
Share. Facebook Twitter Email

Related Posts

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

How ChatGPT Has, and Will Continue to, Transform Scientific Research

Mar 21, 2023

Comments are closed.

Latest News

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

How ChatGPT Has, and Will Continue to, Transform Scientific Research

Mar 21, 2023

New Directions for HIV Treatment

Mar 21, 2023

Humans are Not Just Big Mice: Identifying Science’s Muscle-Scaling Problem

Mar 20, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230315_NM036
20230315_NM046
20230315_NM134
20230315_NM205
20230315_NM206
20230315_NM132
20230315_NM130
20230315_NM082
20230315_NM063
20230315_NM058
20230315_NM030
20230315_NM038

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.