Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Investigators Explore Cellular Response to Stress
Scientific Advances

Investigators Explore Cellular Response to Stress

By Melissa RohmanJul 20, 2022
Share
Facebook Twitter Email
Marc Mendillo, PhD, assistant professor of Biochemistry and Molecular Genetics, was senior author of the study published in the Proceedings of the National Academy of Sciences.

Northwestern Medicine investigators have discovered novel mechanisms that regulate a cell’s response to molecular stressors, according to a study published in the Proceedings of the National Academy of Sciences.

The findings may help improve the understanding of how cancer and other diseases use stress response programming to survive.

“Cancers have these deranged genomes. They have mutations, they’re hyper-proliferative, and they’re subjected to chemotherapies and radiation, so these stress response genes really become critical for cancer survival,” said Marc Mendillo, PhD, assistant professor of Biochemistry and Molecular Genetics and senior author of the study.

David Amici, a student in the Medical Scientist Training Program (MSTP), was lead author of the study.

David Amici, a student in the Medical Scientist Training Program, was lead author of the study published in the Proceedings of the National Academy of Sciences.

All human cells contain adaptive signaling pathways that enable them to counteract different types of cellular and environmental stressors. However, because these stress response pathways are almost always studied individually, the mechanisms which help regulate and link these stress response pathways have remained poorly understood.

In the current study, Mendillo’s team used genome-scale fitness screening data compiled by a computational tool called FIREWORKS, which was developed by Mendillo’s laboratory, to map the stress phenotypes of more than 700 cancer cell lines, each of which has a unique burden of intrinsic stressors.

The approach revealed a network of genes promoting cellular stress responses; one gene in particular caught the investigators’ attention: HAPSTR1.

They discovered that HAPSTR1 plays a central role in cellular stress signaling and is also mechanistically induced by specific types of stressors like DNA damage, cellular starvation and proteotoxicity.

Moreover, HAPSTR1 both interacts with and is degraded by a protein called HUWE1, which has been previously implicated in different cancers and neurodevelopmental disorders. The protein is an E3 ubiquitin ligase, meaning its sole function is to hunt down specific proteins and degrade them.

Additional analysis revealed that HUWE1 and HAPSTR1 have a somewhat unconventional relationship: HUWE1 assists HAPSTR1 in controlling stress signaling and in turn, HUWE1 feeds back to promote the degradation of HAPSTR1.

“The relationship is complicated in that we know that they have this shared function because basically turning off either one results in similar types of effects,” Mendillo said.

Overall, the findings point to HAPSTR1 as a central player within a network of stress response pathways promoting cellular adaptability, according to Mendillo.

“The bottom line is we know that HAPSTR1 is promoting cellular resilience to these various types of stresses. We think this is going to be important in cancers and probably other diseases, too,” Mendillo said.

Co-authors include Roger Smith, an MSTP student; Claire Phoumyvong, a student in the Driskill Graduate Program in Life Sciences (DGP); Neil Lindstrom Kelleher, PhD, professor of Medicine in the Division of Hematology and Oncology and of Biochemistry and Molecular Genetics; Issam Ben-Sahra, PhD, assistant professor of Biochemistry and Molecular Genetics; and Daniel Foltz, PhD, associate professor of Biochemistry and Molecular Genetics.

Ben-Sahra, Foltz and Mendillo are members of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

This work was supported by The National Institutes of Health grants R00CA175293, R01GM111907, R35GM138364, 5P20GM103636, F30CA264513, T32GM008152; the American Cancer Society; and Kimmel Scholars, Lynn Sage Scholar, and Robert H. Lurie Comprehensive Cancer Center H Foundation Collaboration awards.

Biochemistry and Molecular Genetics Cancer Research
Share. Facebook Twitter Email

Related Posts

Inflammatory Signaling Linked to Leukemia Progression

Aug 15, 2022

Emerging Therapy for Relapsed Lymphoma

Aug 12, 2022

Scientists Identify Key Mechanism Controlling Skin Regeneration

Aug 11, 2022

Comments are closed.

Latest News

Inflammatory Signaling Linked to Leukemia Progression

Aug 15, 2022

Emerging Therapy for Relapsed Lymphoma

Aug 12, 2022

Scientists Identify Key Mechanism Controlling Skin Regeneration

Aug 11, 2022

Scientists Discover Novel Cellular Mechanisms Behind Transcription Elongation

Aug 10, 2022

First-Year Medical Students Celebrate Founders’ Day 2022

Aug 9, 2022
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
egn-flickr
Founders' Day 2022_EGN-retouched
220805_SERIO_MANDELL_FEINBERG_White_Coat_1676
220805_SERIO_MANDELL_FEINBERG_White_Coat_1206
220805_SERIO_MANDELL_FEINBERG_White_Coat_1144 (1)
220805_SERIO_MANDELL_FEINBERG_White_Coat_1133
220805_SERIO_MANDELL_FEINBERG_White_Coat_1057
220805_SERIO_MANDELL_FEINBERG_White_Coat_1424
220805_SERIO_MANDELL_FEINBERG_White_Coat_1472
220805_SERIO_MANDELL_FEINBERG_White_Coat_1573
220805_SERIO_MANDELL_FEINBERG_White_Coat_1671
220805_SERIO_MANDELL_FEINBERG_White_Coat_1793

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2022 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.