Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Cannabinoid Pathway Linked to Psychiatric Disorders
Scientific Advances

Cannabinoid Pathway Linked to Psychiatric Disorders

By Will DossJun 30, 2021
Share
Facebook Twitter Email
Peter Penzes, PhD, the Ruth and Evelyn Dunbar Professor of Psychiatry and Behavioral Sciences, professor of Physiology and Pharmacology, and director of the Center for Autism and Neurodevelopment, was the senior author of the study published in Biological Psychiatry.

Northwestern Medicine scientists discovered an unexpected connection between a synapse protein that has been implicated in neuropsychiatric disorders and the endocannabinoid pathway, according to a study published in Biological Psychiatry.

These findings suggest a role for the endocannabinoid system in conditions including bipolar disorder, according to Peter Penzes, PhD, the Ruth and Evelyn Dunbar Professor of Psychiatry and Behavioral Sciences, professor of Physiology and Pharmacology, and senior author of the study.

“The endocannabinoid system could be disrupted in patients with bipolar disease, or it could be the opposite: medical marijuana could have therapeutic potential for these patients,” said Penzes, who is also director of the Center for Autism and Neurodevelopment. “These are the questions that need to be answered.”

Cannabis has an effect on humans because it mimics endocannabinoids, chemicals occurring naturally in the brain. While the specific function of endocannabinoids is still not fully understood, the legalization of marijuana in many U.S. states has prompted more investigation into its biological pathways, Penzes said.

Endocannabinoids are produced by an enzyme called diacylglycerol lipase alpha (DAGLA), which is concentrated in synapses. Endocannabinoids dampen synaptic strength, one reason for the calming effects of marijuana.

Confocal microscope image of the mouse hippocampus showing colocalization of ankyrin-G (green) and DAGLA (red) in the same neurons.

Penzes and his collaborators have previously studied ankyrin-G, another synapse protein that regulated the speed of transmission across synapses. Aberrant expression of ankyrin-G — either too much or too little — has been associated with disorders such as bipolar disorder, schizophrenia and autism.

Studying mice genetically modified to lack ankyrin-G, they made a surprising discovery: Ankyrin-G appeared to stabilize DAGLA at synapses, making DAGLA more efficient.

“It’s a delicate mechanism that regulates dendritic spine morphology,” said Sehyoun Yoon, PhD, research assistant professor of Physiology and lead author of the study.

These findings comport with another recent study, led by investigators at Icahn School of Medicine at Mount Sinai and published in Nature Genetics. The study showed that both DAGLA and ankyrin-G (ANK3) are risk genes for bipolar disorder in a genome analysis of over 40,000 patients.

“It’s almost like somebody who is leading a double life, Dr. Jekyll and Mr. Hyde,” Penzes said. “Ankyrin-G has this entire separate function.”

The convergence of ankyrin-G with the endocannabinoid pathway opens up an entire new world of possibilities, both for investigating disease risk and possible therapies.

“Cannabis may contribute to increased risk for mental disorders, which has actually been shown in schizophrenia,” Penzes said. “Conversely, cannabis could be beneficial in some brain disorders, which prompted trials of medical marijuana in patients with autism.”

In the future, Penzes said he plans to examine the downstream effects of this biological pathway, both in normal subjects and in disease.

This work was supported by the National Institute of Mental Health grant R01MH107182.

Neurology and Neuroscience Physiology Psychiatry Research
Share. Facebook Twitter Email

Related Posts

Self-Powered Wireless Implant Delivers Medication, Then Dissolves

Mar 30, 2023
Mar 29, 2023

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

The Future of IgE-Mediated Allergy Research and Treatments

Mar 29, 2023

Comments are closed.

Latest News

Self-Powered Wireless Implant Delivers Medication, Then Dissolves

Mar 30, 2023

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

The Future of IgE-Mediated Allergy Research and Treatments

Mar 29, 2023

Weintraub Appointed to Illinois Supreme Court Commission on Elder Law

Mar 28, 2023

Investigating Protein’s Role in Hearing Loss

Mar 27, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM651
20230317_NM610
20230317_NM569
20230317_NM537
20230317_NM331
20230317_NM323
20230317_NM316
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.