Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » New Role for RNA Splicing in Insulin Regulation
Scientific Advances

New Role for RNA Splicing in Insulin Regulation

By Will DossJul 2, 2020
Share
Facebook Twitter Email
Joseph Bass, MD, PhD, the Charles F. Kettering Professor of Medicine, director of the Center for Diabetes and Metabolism and chief of Endocrinology in the Department of Medicine, was senior author of the study published in Genes and Development.

The gene transcription machinery that controls circadian rhythm also regulates insulin release in the pancreas, according to a Northwestern Medicine study published in the journal Genes and Development.

Mouse models with a mutated clock gene also failed to release insulin from beta cells in the pancreas, due to aberrant RNA splicing. This is the first time scientists have identified RNA regulation as a mechanism by which the internal body clock affects systems beyond the sleep-wake cycle, according to Joseph Bass, MD, PhD, the Charles F. Kettering Professor of Medicine in the Division of Endocrinology, director of the Center for Diabetes and Metabolism and senior author of the study.

“This should raise interest in other areas of the body, for people to search for RNA shuffling as an explanation for how timing regulates biologic systems,” said Bass, who is also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Mammalian circadian rhythm is regulated by a complex gene transcription feedback loop. Specialized cells in the brain detect light or darkness, and through gene transcription, set a day and night cycle that in turn influences a variety of functions throughout the entire body.

In the early days of clock transcription science, Bass discovered that turning off a gene crucial for clock transcription caused mice to develop diabetes due to lack of insulin production. However, the precise connection between the clock gene and insulin regulation was unclear and analyzing the impact of clock gene deletion through RNA sequencing was inconclusive, Bass said.

In the current study, Bass and his collaborators took a second look. Specifically, they focused on RNA splicing, a re-shuffling of RNA that occurs in gaps between coding regions. In normal RNA analysis, RNA splicing is unmeasured and invisible, but the investigators used an alternative sequencing approach in order to consider the effect of the splicing.

Comparing normal mice to mice without the clock gene, the investigators found significant changes. Certain proteins expressed during specific time windows during the daytime increased in activity due to changes in RNA splicing. Mice without the clock gene — and therefore, these splicing changes — had dramatically lower levels of insulin released during the time of day when animals eat, resulting in diabetes and obesity.

“The protein is the same, but splicing generates a coding sequence that’s included with the protein, generating a different functional form of the protein,” Bass said.

The investigators took this one step further, generating pancreatic islet cells with the intact clock protein and the specific aberrant splicing changes, finding it reproduced defects in insulin release.

“All these approaches pointed to one thing: splicing is a way that the pancreas tells when it is time to make insulin and a hallmark of diabetes is a failure in this process,” Bass said.

While Bass hopes that other scientists will examine the role of splicing in other organs and systems, beta cell failure is also experienced by patients with late-stage diabetes, so these findings could inform treatments down the line.

“One possibility may be that restoring splicing could enhance beta-cell function,” Bass said. “It’s a long-term question, but it’s a potential therapeutic strategy.”

This study was supported by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grants R01DK090625, DK007169, R01DK100814 and 1R01DK113011-01A1; National Institute on Aging (NIA) grant P01AG011412; the Chicago Biomedical Consortium grant S-007; JDRF grants 17-2013-511, 1-INO-2014-178-A-V and 1-INO-2015-23-A-V; and the University of Chicago Diabetes Research and Training Center grant P60DK020595; National Research Service Award (NRSA) grant F32HL143978; National Heart, Lung, and Blood Institute (NHLBI) T32 grant HL007909; National Research Service Award (NRSA) grant F30DK116481; Manpei Suzuki Diabetes Foundation Fellowship; a National Science Foundation fellowship; a studentship from the Li Ka Shing Foundation; NIH grants R01HL061322 and HG004659; and a Foundation Grant from the Canadian Institutes of Health Research.

Genetics Health and Lifestyle Research
Share. Facebook Twitter Email

Related Posts

Hospitals Bound to Patient Safety Rules that Aren’t all Backed by Evidence

Jun 24, 2022

Identifying Protein Interactions that Promote Cancer Growth

Jun 24, 2022

Calcium Channel Blockers May Improve Chemotherapy Response

Jun 21, 2022

Comments are closed.

Latest News

Student Spearheads Ukraine Aid Efforts

Jun 27, 2022

Hospitals Bound to Patient Safety Rules that Aren’t all Backed by Evidence

Jun 24, 2022

Identifying Protein Interactions that Promote Cancer Growth

Jun 24, 2022

Combination Treatment May Improve Quality of Life in Kidney Cancer

Jun 23, 2022

Calcium Channel Blockers May Improve Chemotherapy Response

Jun 21, 2022
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
pride7
pride6
pride5
pride4
pride3
pride2
pride1
20220607_Feinberg Campus_0070
20220607_Feinberg Campus_0066
20220607_Feinberg Campus_0054
Northwestern University 2022. Photo by Jim Prisching
20220607_Feinberg Campus_0077

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2022 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.