Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Scientists Develop New Tool to Study Nicotine Receptors
Scientific Advances

Scientists Develop New Tool to Study Nicotine Receptors

By Anna WilliamsMar 26, 2018
Share
Facebook Twitter Email
Ryan Drenan,PhD, Pharmacology
Ryan M. Drenan, PhD, associate professor of Pharmacology, was a co-corresponding author of the paper published in Nature Methods.

A team of scientists has developed a new technique to better understand the effects of nicotine on the brain. In a study published in Nature Methods, the investigators described the creation of a novel light-activated nicotine compound, which will allow scientists to better study receptors that play a key role in nicotine addiction.

“Investigators are now able to study the neurotransmitter receptor for nicotine in ways not previously possible,” said co-corresponding author Ryan M. Drenan, PhD, associate professor of Pharmacology. “Scientists interested in studying nicotine dependence or acetylcholine — the neurotransmitter that normally binds to ‘nicotine receptors’ — now have a fantastic tool that, when properly employed, may enable us to uncover fundamental principles of cholinergic transmission.”

Matthew C. Arvin, PharmD, a graduate student in Drenan’s laboratory, was a co-first author of the study, which was conducted in collaboration with investigators at the Howard Hughes Medical Institute’s Janelia Research Campus.

Photoactivatable versions of drugs, which can be activated by brief flashes of light, are an important tool used in pharmacological research to study processes in cells and to model drug behavior. Until recently, however, scientists lacked the ability to develop compounds for many drugs, including a class with a so-called “tertiary nitrogen,” which includes nicotine.

In the current study, the team of scientists developed a new chemical method for preparing derivatives of such previously “uncageable” drugs — and applied the strategy to nicotine. After developing a photoactivatable nicotine, called PA-Nic, they utilized the compound to study nicotinic acetylcholine receptors.

“We used the probe to reveal new details about how chronic nicotine exposure changes the activity and location of these receptors, paving the way for a new approach to studying nicotine dependence,” Drenan said.

The new strategy will be essential for studies of acetylcholine transmission and nicotine dependence, but the approach could also be applied to other drugs that have a tertiary nitrogen, according to the authors. For example, the study demonstrates the creation of photoactivatable versions of the opioid fentanyl and the antidepressant escitalopram, among others.

“This could lead to novel research in many aspects of neurobiology that impact human health, including mood disorders or the opioid epidemic,” Drenan said.

Luke D. Davis, PhD, of the Janelia Research Campus, Howard Hughes Medical Institute, whose lab developed the chemistry behind PA-Nic, was a co-corresponding author of the study.

The study was supported by the Howard Hughes Medical Institute, the National Institutes of Health (NIH) grants DA035942, DA040626, MH099114, DA037161, NS054850, GM103801 and GM48677, the PhRMA Foundation, the Arnold and Mabel Beckman Foundation, the Bernice E. Bumpus Foundation, the Rita Allen Foundation, the Searle Scholars Program, the Alfred P. Sloan Foundation, NINDS fellowship F32 NS103243, the JPB Foundation and Northwestern University.

Neurology and Neuroscience Pharmacology Research
Share. Facebook Twitter Email

Related Posts

Self-Powered Wireless Implant Delivers Medication, Then Dissolves

Mar 30, 2023
Mar 29, 2023

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

The Future of IgE-Mediated Allergy Research and Treatments

Mar 29, 2023

Comments are closed.

Latest News

NUDOCS Program Inspires the Next Generation of Physicians

Mar 31, 2023

Women in Medicine Conference Celebrates Community

Mar 31, 2023

Self-Powered Wireless Implant Delivers Medication, Then Dissolves

Mar 30, 2023

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

The Future of IgE-Mediated Allergy Research and Treatments

Mar 29, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM651
20230317_NM610
20230317_NM569
20230317_NM537
20230317_NM331
20230317_NM323
20230317_NM316
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.