Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » New Insights Into Herpes Virus Could Inform Vaccine Development
Disease Discoveries

New Insights Into Herpes Virus Could Inform Vaccine Development

By Anna WilliamsOct 16, 2017
Share
Facebook Twitter Email
Richard Longnecker, PhD, Dan and Bertha Spear Research Professor of Microbiology-Immunology, was a co-author of the study published in PNAS.

A team of scientists has discovered new insights into the mechanisms of Epstein-Barr virus (EBV) infection, as well as two antibodies that block the virus’ entry into cells. The findings, published in Proceedings of the National Academy of Sciences (PNAS), have the potential to lead to the development of novel vaccines to prevent infection by EBV and other human herpesviruses.

Richard Longnecker, PhD, Dan and Bertha Spear Research Professor of Microbiology-Immunology, was a co-author of the study. The research was a joint project with Theodore Jardetzky, PhD, of Stanford University, with whom the Longnecker laboratory has had a long-term collaboration.

EBV, which causes infectious mononucleosis (mono), is one of nine types of herpesviruses that can infect humans. The vast majority of humans are infected with EBV by the time they reach adulthood, typically without serious medical issues. However, EBV infection can also contribute to a variety of cancers, including Burkitt and Hodgkin lymphoma and nasopharyngneal carcinoma.

There are currently no treatments or vaccines to prevent EBV, and despite extensive study, the mechanism by which EBV gains entry into the cells it infects has not been completely understood.

In research published earlier this year in Nature Communications, Jardetzky and Longnecker revealed the structure of EBV proteins that help regulate the virus’ fusion onto host cell membranes. These proteins are also potential targets for protective antibodies in vaccine development.

In the current study, the scientists built upon those previous findings to describe how EBV proteins — and by extension, other herpesvirus proteins — function in mediating the process of viral infection in humans.

Importantly, the team also analyzed the binding sites on these proteins for antibodies that are able to neutralize EBV infection, and described the mechanisms by which these antibodies block viral entry. The antibodies block fusion with epithelial and B cells, which are the cells types that EBV infects in humans.

“These studies may result in the generation of antibodies that protect humans from EBV infection, and also provide new ideas for the development of vaccine candidates to prevent infection of humans by the EBV and other human herpesviruses,” said Longnecker, also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Karthik Sathiyamoorthy, PhD, first author of both papers, is a post-doctoral fellow in Jardetzky’s laboratory. Jia Chen, PhD, and Britta Möhl, PhD, post-doctoral fellows in Longnecker’s laboratory, were also co-authors of the paper. Jiansen Jiang, PhD, and Hong Zhou, PhD, of the University of California, Los Angeles, contributed important expertise to the published studies.

The research was supported by the National Institute of Allergy and Infectious Diseases (Grants AI119480 and AI076183) and the National Cancer Institute (Grant CA117794).

Immunology Microbiology Research
Share. Facebook Twitter Email

Related Posts

‘Inside Out’ Signaling Promotes Tumor Growth

Aug 5, 2022

New Insights in Retinal Neurons

Aug 4, 2022

New Therapeutic Approach Could Prevent Injury to Fragile Transplanted Lungs

Aug 2, 2022

Comments are closed.

Latest News

First-Year Medical Students Celebrate Founders’ Day 2022

Aug 9, 2022

‘Inside Out’ Signaling Promotes Tumor Growth

Aug 5, 2022

New Insights in Retinal Neurons

Aug 4, 2022

Medical Student Wins Presidential Fellowship

Aug 3, 2022

New Therapeutic Approach Could Prevent Injury to Fragile Transplanted Lungs

Aug 2, 2022
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
220805_SERIO_MANDELL_FEINBERG_White_Coat_1676
220805_SERIO_MANDELL_FEINBERG_White_Coat_1206
220805_SERIO_MANDELL_FEINBERG_White_Coat_1144 (1)
220805_SERIO_MANDELL_FEINBERG_White_Coat_1133
220805_SERIO_MANDELL_FEINBERG_White_Coat_1057
220805_SERIO_MANDELL_FEINBERG_White_Coat_1424
220805_SERIO_MANDELL_FEINBERG_White_Coat_1472
220805_SERIO_MANDELL_FEINBERG_White_Coat_1573
220805_SERIO_MANDELL_FEINBERG_White_Coat_1671
220805_SERIO_MANDELL_FEINBERG_White_Coat_1793
220805_SERIO_MANDELL_FEINBERG_White_Coat_0885
220805_SERIO_MANDELL_FEINBERG_White_Coat_1144

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2022 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.