Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Mitochondria Behind Blood Cell Formation
Scientific Advances

Mitochondria Behind Blood Cell Formation

By Nora DunneJun 12, 2017
Share
Facebook Twitter Email
Mitochondria are tiny, free-floating organelles inside cells. New Northwestern Medicine research has discovered that they play an important role in hematopoiesis, the body’s process for creating new blood cells.

New Northwestern Medicine research published in Nature Cell Biology has shown that mitochondria, traditionally known for their role creating energy in cells, also play an important role in hematopoiesis, the body’s process for creating new blood cells.

“Historically, mitochondria are viewed as ATP — energy — producing organelles,” explained principal investigator Navdeep Chandel, PhD, the David W. Cugell Professor of Medicine in the Division of Pulmonary and Critical Care Medicine. “Previously, my laboratory provided evidence that mitochondria can dictate cell function or fate independent of ATP production. We established the idea that mitochondria are signaling organelles.”

In the current study, Chandel’s team, including post-doctoral fellow Elena Ansó, PhD, and graduate students Sam Weinberg and Lauren Diebold, demonstrated that mitochondria control hematopoietic stem cell fate by preventing the generation of a metabolite called 2-hydroxyglutarate (2HG). The scientists showed that mice with stem cells deficient in mitochondrial function cannot generate blood cells due to elevated levels of 2HG, which causes histone and DNA hyper-methylation.

“This is a great example of two laboratories complementing their expertise to work on a project,” said Chandel, also a professor of Cell and Molecular Biology.

Sam Weinberg, a graduate student in the Medical Scientist Training Program, and Lauren Diebold, a graduate student in the Driskill Graduate Program in Life Sciences, were co-authors on the paper.
Sam Weinberg, a graduate student in the Medical Scientist Training Program, and Lauren Diebold, a graduate student in the Driskill Graduate Program in Life Sciences, were co-authors on the paper.

Paul Schumacker, PhD, professor of Pediatrics, Cell and Molecular Biology and Medicine, was also a co-author on the paper. Schumacker and Chandel are both members of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Chandel co-authored an accompanying paper in Nature Cell Biology, led by Jian Xu, PhD, at the University of Texas Southwestern Medical Center, which demonstrated that initiation of erythropoiesis, the production of red blood cells specifically, requires functional mitochondria.

“These two studies collectively support the idea that metabolism dictates stem cell fate, which is a rapidly evolving subject matter,” said Chandel, who recently wrote a review in Nature Cell Biology highlighting this idea. “An important implication of this work is that diseases linked to mitochondrial dysfunction like neurodegeneration or normal aging process might be due to elevation in metabolites like 2HG.”

This research was supported by National Institutes of Health grants R35CA197532, T32 GM008061, T32 T32HL076139, K01DK093543 and R01DK111430, and Cancer Prevention and Research Institute of Texas New Investigator award RR140025.

Cell and Developmental Biology Pulmonology Research
Share. Facebook Twitter Email

Related Posts

Weight Loss Drug May Help Patients with Heart Failure

Oct 2, 2023

Surmeier Recognized with Annemarie Opprecht Parkinson Award

Oct 2, 2023

Mapping Neural Activity Patterns and Odor Perception  

Sep 28, 2023

Comments are closed.

Latest News

Weight Loss Drug May Help Patients with Heart Failure

Oct 2, 2023

Surmeier Recognized with Annemarie Opprecht Parkinson Award

Oct 2, 2023

Medical Education Day Celebrates Mentorship and Equity

Sep 29, 2023

Mapping Neural Activity Patterns and Odor Perception  

Sep 28, 2023

Lloyd-Jones Announces He is Stepping Down as Chair of Preventive Medicine

Sep 27, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230927_MedEdDay_Sargent_6
20230927_MedEdDay_Sargent_3
20230927_MedEdDay_Sargent_1
20230927_MedEdDay_Posters_Patel_2
20230927_MedEdDay_Posters_Patel_1
20230927_MedEdDay_Posters_Panko_1
20230927_MedEdDay_Posters_4
20230927_MedEdDay_Posters_3
20230927_MedEdDay_Posters_2
20230927_MedEdDay_Posters_1
20230927_MedEdDay_Awards_6
20230927_MedEdDay_Awards_5

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.