Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Engineering Nanomaterials to Deliver Precise Treatments for Heart Disease
Scientific Advances

Engineering Nanomaterials to Deliver Precise Treatments for Heart Disease

By Anna WilliamsJan 10, 2017
Share
Facebook Twitter Email
scott-evan
Evan Scott, PhD, assistant professor of Biomedical Engineering in the McCormick School of Engineering and a member of the Simpson Querrey Institute for BioNanotechnology, was the lead author of the paper.

Northwestern Medicine scientists have demonstrated an enhanced approach to using nanomaterials to target inflammatory cells involved in atherosclerosis. The findings, published in the journal ACS Nano, could lead to improved diagnosis and treatment of atherosclerosis, a leading cause of heart disease.

Edward Thorp, PhD, assistant professor of Pathology, was a co-author of the paper. The study was led by Evan Scott, PhD, assistant professor of Biomedical Engineering in the McCormick School of Engineering and a member of the Simpson Querrey Institute for BioNanotechnology.

Atherosclerosis, the hardening of arteries due to a buildup of plaque, is a chronic inflammatory condition with limited therapies. As such, there’s been much interest in developing novel nanomaterials that might directly target key immune cells associated with atherosclerosis, and serve as platforms for diagnostic imaging and more precise delivery of treatment.

In the current study, a team of scientists demonstrated for the first time that tweaking the nanostructure morphology  — aspects of the material’s form, shape and size — while maintaining the same surface chemistry led to enhanced targeting of dendritic cells, a cell population that plays a role in atherosclerosis, as well as a variety of other pathologies.

Specifically, under the investigators’ mouse model, polymersomes — a type of artificial vesicle in a sphere shape — were found to be significantly more efficient at targeting dendritic cells in atherosclerotic lesions, compared to two other structures studied.

Edward Thorp, PhD, Pathology
Edward Thorp, PhD, assistant professor of Pathology, was a co-author of the paper.

The findings have important indications for the design of future nanomaterials, underscoring the idea that morphology can be modified to improve targeting in drug delivery.

Scott is also a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University and the Chemistry of Life Processes Institute.

The research was supported by the National Institutes of Health Director’s New Innovator Award grant 1DP2HL132390-01, American Heart Association grant 14SDG20160041, Chemistry of Life Processes Institute Postdoctoral Fellows Program, the Louis A. Simpson and Kimberly K. Querrey Center for Regenerative Nanomedicine Catalyst Award, National Institutes of Health Predoctoral Biotechnology Training Grant T32GM008449.

Cardiology Nanotechnology Pathology Research
Share. Facebook Twitter Email

Related Posts

Sex-Specific Mechanisms for Major Depressive Disorder Identified in Response to Dysregulated Stress Hormones

Mar 23, 2023

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

Comments are closed.

Latest News

Sex-Specific Mechanisms for Major Depressive Disorder Identified in Response to Dysregulated Stress Hormones

Mar 23, 2023

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

How ChatGPT Has, and Will Continue to, Transform Scientific Research

Mar 21, 2023

New Directions for HIV Treatment

Mar 21, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM651
20230317_NM610
20230317_NM569
20230317_NM537
20230317_NM331
20230317_NM323
20230317_NM316
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.