Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Uncovering Mechanisms of Replication in Human Papillomavirus
Disease Discoveries

Uncovering Mechanisms of Replication in Human Papillomavirus

By Sarah PlumridgeMay 20, 2015
Share
Facebook Twitter Email
ImageJ=1.47i unit=inch
Scientists used immunofluorescence to show active proteins (green and red dots) in differentiated HPV-positive cells.

Northwestern Medicine scientists have identified proteins that mediate aspects of virus replication in the lifecycle of human papillomavirus (HPV), a finding that may lead to new therapeutic targets for treatment of infections caused by the virus.

“What we show, for the first time, are the proteins that hold chromatin together during mitosis, or cell replication, are the same proteins that play an important role in the DNA damage response in these viral infections,” said Laimonis Laimins, PhD, chair of Microbiology-Immunology.

The study, recently published in PLOS Pathogens, describes two cell proteins as critical regulators of viral replication; SMC1, a protein that bridges DNA together when cells divide, and CTCF, a protein that binds together strands of DNA to form loops that can either repress or enhance gene expression.

When the scientists reduce the genetic expression of these proteins, they found HPV was unable to replicate. They also confirmed that CTCF and SMC1 binding was critical to genome amplification, through mutating CTCF sites on the HPV genome. Reduction in the expression of CTCF resulted in the loss of the ability for SMC1 to interact with the HPV genome.

Kavi Mehta, a graduate student in the lab of Laimonis Laimins, PhD, studies proteins that are necessary for the human papillomavirus to replicate in human cells.

“This research is interesting because it show the ways in which the virus may interact with our own DNA,” said Kavi Mehta, first author of the paper and a third-year graduate student in the Walter S. and Lucienne Driskill Graduate Program in Life Sciences. “The importance of this research is understanding the life cycle of this virus. Now that we have a little bit of a greater understanding of how the virus maintains itself through the cell lifecycle, we might be able to find ways to prevent or understand how the virus evades the immune system.”

Next, Mehta plans to investigate how HPV uses these proteins to bring in other factors that allow the virus to replicate.

“These are small steps to figuring out this entire virus life cycle that is important for HPV biology,” Mehta said. “Once we know more about that, then this knowledge could be used as a base for developing therapeutics.”

The research was funded by National Cancer Institute grants CA59655 and CA142861, and the Cellular and Molecular Basis of Disease Training Grant T32 NIH T32 GM08061.

Microbiology Research
Share. Facebook Twitter Email

Related Posts

Investigating the Connection Between Steps and Heart Disease Risk

Feb 1, 2023

Transforming the Way Cancer Vaccines are Designed and Made

Jan 30, 2023

Calcium Channels Regulate Neuroinflammation and Neuropathic Pain 

Jan 27, 2023

Comments are closed.

Latest News

Investigating the Connection Between Steps and Heart Disease Risk

Feb 1, 2023

Medical School Faculty Named AAAS Fellows

Jan 31, 2023

Transforming the Way Cancer Vaccines are Designed and Made

Jan 30, 2023

Calcium Channels Regulate Neuroinflammation and Neuropathic Pain 

Jan 27, 2023

Changes in Medical School Leadership

Jan 26, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
Feinberg_In_Vivo_20221209_tcrawford-24
Feinberg_In_Vivo_20221209_tcrawford-16
Feinberg_In_Vivo_20221209_tcrawford-14
Feinberg_In_Vivo_20221209_tcrawford-5
Feinberg_In_Vivo_20221209_tcrawford-6
Feinberg_In_Vivo_20221209_tcrawford-10
Feinberg_In_Vivo_20221209_tcrawford-8
Feinberg_In_Vivo_20221209_tcrawford-18
Feinberg_In_Vivo_20221209_tcrawford
Feinberg_In_Vivo_20221209_tcrawford-23
Feinberg_In_Vivo_20221209_tcrawford-25
Feinberg_In_Vivo_20221209_tcrawford-26

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.