Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Understanding Immunosuppressive Mechanisms of T-Cell Receptors
Scientific Advances

Understanding Immunosuppressive Mechanisms of T-Cell Receptors

By Melissa RohmanMay 25, 2022
Share
Facebook Twitter Email
Hui Zhang, PhD, professor of Preventive Medicine in the Division of Biostatistics, was a co-author of the study published in Nature Immunology.

Investigators have discovered the mechanisms underlying a T-cell receptor’s immunosuppressive function, according to a study published Nature Immunology, findings that may provide insight into the development of novel precision therapeutics for chronic diseases, including cancer.

Hui Zhang, PhD, professor of Preventive Medicine in the Division of Biostatistics, a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, and director of Lurie Cancer’s Brain Tumor SPORE Biostatistics and Bioinformatics Core and of the Biostatistics and Data Management Core in the Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, was a co-author of the study.

LAG3 is an immune checkpoint receptor expressed on the surface of exhausted T-cells, which progressively lose their immune functions while fighting chronic infection or cancer. As an immune checkpoint, LAG3 inhibits the activation of the host cell and promotes an immunosuppressive response.

While immunotherapy treatments targeting LAG3 continue to be evaluated in clinical trials, the mechanisms by which LAG3 inhibits T-cell function and proper immune response have remained understudied.

In the current study, investigators analyzed CD4+ and CD8+ T-cells in mice, and discovered that LAG3 relocates to the immunological synapse — the space between an antigen-presenting cell and the immune cell — and binds with the T-cell receptor (TCR) CD3 protein complex.  

The investigators noted this relocation occurred instead of LAG3 binding to major histocompatibility complex (MHC) class II molecules, which are found on antigen-presenting cells and are essential for initiating a proper immune response.

Using two super-resolution microscopy techniques — stimulated emission depletion (STED) microscopy and stochastic optical reconstruction microscopy (STORM) — the investigators found that LAG3 colocalized with the TCR–CD3 complex in CD4+ and CD8+ T-cells, resulting in the loss of proper TCR signaling and decreasing T-cell activation.

To identify and quantify the coordinate-based single-molecule data from STED and STORM, investigators utilized an innovative statistical method proposed by Zhang’s laboratory, the normalized spatial intensity correlation (NSInC) statistical algorithm, which allows for unbiased analysis of coordinate-based single-molecule data to determine which identified proteins are colocalized in three-dimensional space.

“These observations indicated that LAG3 functioned as a signal disruptor in a major histocompatibility complex class II-independent manner and provide insight into the mechanism of action of LAG3-targeting immunotherapies,” the authors wrote.

Because current LAG3-targeting cancer therapeutics block the LAG3–MHC class II interaction, the findings may aide in the development of therapeutics targeting LAG3 and the LAG3–TCR association, as well as for the treatment of autoimmune and inflammatory diseases, according to the authors.

This work was supported by the National Institutes of Health grants P01 AI108545, R01 AI129893 and R01 AI144422; National Cancer Institute Comprehensive Cancer Center Support CORE grant CA047904; and the American Lebanese Syrian Associated Charities.

Cancer Preventive Medicine Research
Share. Facebook Twitter Email

Related Posts

Humans are Not Just Big Mice: Identifying Science’s Muscle-Scaling Problem

Mar 20, 2023

Predicting Risk of Blood Clots in Brain Tumors

Mar 16, 2023

Understanding How Exercise Induces Systemic Metabolic Benefits

Mar 15, 2023

Comments are closed.

Latest News

Humans are Not Just Big Mice: Identifying Science’s Muscle-Scaling Problem

Mar 20, 2023

AOA Honors New Members

Mar 20, 2023

Celebrating Feinberg’s 2023 Match Day

Mar 17, 2023

Predicting Risk of Blood Clots in Brain Tumors

Mar 16, 2023

Understanding How Exercise Induces Systemic Metabolic Benefits

Mar 15, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
_5NM1245
230204_SERIO_MANDELL_Feinberg_Formal_0928
_5NM1715
_5NM0526
_5NM1026 (1)
_5NM1906
_5NM2173
230204_SERIO_MANDELL_Feinberg_Formal_0896
230204_SERIO_MANDELL_Feinberg_Formal_1113
230204_SERIO_MANDELL_Feinberg_Formal_1868
230204_SERIO_MANDELL_Feinberg_Formal_1237
230204_SERIO_MANDELL_Feinberg_Formal_1172

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.