Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » New Autism Biomarker Discovered in Cerebrospinal Fluid
Disease Discoveries

New Autism Biomarker Discovered in Cerebrospinal Fluid

By Will DossDec 17, 2021
Share
Facebook Twitter Email
Peter Penzes, PhD, the Ruth and Evelyn Dunbar Professor of Psychiatry and Behavioral Sciences, professor of Physiology and Pharmacology, and director of the Center for Autism and Neurodevelopment, was the senior author of the study published in the journal Neuron.

Northwestern Medicine scientists have discovered a biomarker for one type of autism within patients’ cerebrospinal fluid, according to a study published in the journal Neuron.

This biomarker’s presence helps establish a link between autism and epilepsy, conditions which often co-occur but whose conjunctive mechanisms remain unknown, according to Peter Penzes, PhD, the Ruth and Evelyn Dunbar Professor of Psychiatry and Behavioral Sciences, professor of Neuroscience and Pharmacology, and senior author of the study.

“There’s too much excitation and too little inhibition in the brain, which can impact both autism and epilepsy,” said Penzes, who is also director of the Center for Autism and Neurodevelopment. “This is the first report of a biomarker for autism in cerebrospinal fluid.”

Some patients with autism also have epilepsy, especially patients whose autism is linked to mutations in the gene CNTNAP2. This gene normally creates a cellular adhesion protein which helps neurons connect to one another, but loss-of-function mutations have been associated with both autism and epilepsy.

In the current study, Penzes and his collaborators analyzed cerebrospinal fluid (CSF) from patients with autism and heathy controls, finding that patients with autism had fewer molecules of CNTNAP2 floating freely in the CSF.

When CNTNAP2 is freely floating, it functions more like a hormone than a cellular glue, Penzes said, binding to neurons and reducing excitatory neurotransmissions. Therefore, CNTNAP2 may play a secondary role as a regulator of excitatory activity.

“When the brain is getting too excited, CNTNAP2 gets broken off and attaches to brain cells as a sort of feedback switch,” Penzes said. “If you don’t have CNTNAP2, there’s hyper-connectivity between neurons which can contribute to autism, and there’s excessive excitation of neurons which can lead to seizures.”

CNTNAP2’s role in regulating excitation was previously unknown, and points to a possible future therapy in which CNTNAP2 could be administered to patients to replace that which their bodies’ cannot produce. However, its presence in CSF also opens new possibilities as a biomarker, according to Penzes.

3D image of a neuron (green) and the protein CNTNAP2 floating away from the neuron.

“Measures for behavioral health in people with autism could be very subjective, but if we can actually measure levels of CNTNAP2 and correlate that with how well a treatment is working, that could really improve implementation,” Penzes said.

Further, Penzes said he and his collaborators discovered other autism-associated biomarkers in CSF, and studying those will be a priority moving forward.

“Maybe these other factors could be used as biomarkers, and they also might tell us about similar unknown biological mechanisms, as CNTNAP2 did,” Penzes said.

M. Dolores Martin-de-Saavedra, PhD, assistant professor at Universidad Complutense (Madrid, Spain) and former postdoctoral fellow in the Penzes Laboratory, was lead author of the study. Jeffrey Savas, PhD, assistant professor in the Ken and Ruth Davee Department of Neurology Division of Behavioral Neurology, was a co-author of the study.

This work was supported by grant NS100785 from the U.S. National Institute of Neurological Disorders and Stroke and an individual Biomedical Research Award from the Hartwell Foundation.

Genetics Neurology and Neuroscience Research
Share. Facebook Twitter Email

Related Posts

Self-Powered Wireless Implant Delivers Medication, Then Dissolves

Mar 30, 2023
Mar 29, 2023

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

The Future of IgE-Mediated Allergy Research and Treatments

Mar 29, 2023

Comments are closed.

Latest News

NUDOCS Program Inspires the Next Generation of Physicians

Mar 31, 2023

Women in Medicine Conference Celebrates Community

Mar 31, 2023

Self-Powered Wireless Implant Delivers Medication, Then Dissolves

Mar 30, 2023

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

The Future of IgE-Mediated Allergy Research and Treatments

Mar 29, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM651
20230317_NM610
20230317_NM569
20230317_NM537
20230317_NM331
20230317_NM323
20230317_NM316
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.