Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » How Gene Mutation Causes Autism and Intellectual Disability
Disease Discoveries

How Gene Mutation Causes Autism and Intellectual Disability

By Marla PaulDec 5, 2019
Share
Facebook Twitter Email

Discovery points toward new treatment approach

Peter Penzes, PhD, director of the new Center for Autism and Neurodevelopment and professor of Physiology, who lead the research into genetic mutations and autism spectrum disorder.

As described in a study published in the journal Neuron, Northwestern Medicine scientists have discovered why a specific genetic mutation causes intellectual disability and autism spectrum disorder in children.

“We have solved an important piece of the puzzle in understanding how this mutation causes intellectual disabilities and mental illness,” said lead author Peter Penzes, PhD, director of the new Center for Autism and Neurodevelopment and the Ruth and Evelyn Dunbar Professor of Psychiatry and Behavioral Sciences and of Physiology.

The Northwestern scientists discovered that genetic mutations in human patients in a gene called Usp9x result in the brain growing fewer synapses. That’s because Usp9x protects another protein called ankyrin-G, whose role is to grow and stabilize synapses. The developing brain needs to build lots of synapses between neurons so cells can communicate while the brain grows, and to learn.

But when Usp9x is mutated, it can’t stabilize the synapse-enhancing ankyrin-G. Thus, the would-be enhancer protein degrades and destabilizes, resulting in fewer synapses in the brain, scientists found. Individuals with this mutation have developmental delay, difficulty learning, increased anxiety and hyperactivity.

In addition to ankyrin-G, Usp9x also protects several other important synapse-enhancing proteins, which when mutated also cause intellectual disability and autism. Usp9x is a master-stabilizer of many key proteins essential for brain development and learning.

It is notable that severe mutations in ankyrin-G are also known to cause intellectual disability and autism. Or, if a person inherits a less severe form of the mutation in ankyrin-G, their synapses develop relatively normally in childhood. But during adolescence – when there is a big turnover of synapses as the brain matures – more of these vital neuron connectors are lost than normal. The result can be schizophrenia and bipolar disease.

A possible cancer drug connection

Interestingly, Usp9x and related proteins are also involved in cancer and have been of interest to the pharmaceutical industry. Hence, some candidates from the cancer drug development process could potentially be used to target Usp9x to treat some forms of intellectual disability, autism, schizophrenia and bipolar disorder.

About the Center for Autism and Neurodevelopment at Northwestern

The center’s mission is to spur interdisciplinary research collaborations aimed at understanding the biological bases of autism and related neurodevelopmental disorders and to facilitate the translation of this knowledge into new treatments.

Autism is a highly prevalent neurodevelopmental disorder. According to the Centers for Disease Control and Prevention, one in 68 children are identified as having Autism Spectrum Disorder.

“Over the past few years, many genetic causes of autism and related disorders have been found, which could provide insight into its neurobiological bases,” Penzes said. “The next major challenge is to understand the function of these genes in shaping the development of brain circuits and how their improper function may derail neurodevelopment. These genes and neurodevelopmental processes could serve as targets for new drugs aimed at treating autism and related disorders.”

Other Northwestern authors are Sehyoun Yoon, PhD, Euan Parnell, PhD, and Marc Forrest, PhD.

The research was supported by grant R01MH107182 from the National Institute of Mental Health of the National Institutes of Health.

Genetics Neurology and Neuroscience Research
Share. Facebook Twitter Email

Related Posts

Dissolving Implantable Device Relieves Pain Without Drugs

Jun 30, 2022

Fathers’ Presence During Childhood Predicts Adult Testosterone Levels

Jun 29, 2022

Epigenetic Biomarkers Predict CVD Risk

Jun 28, 2022

Comments are closed.

Latest News

Physician Assistant Students Embrace ‘Shades of Purple’

Jul 1, 2022

Dissolving Implantable Device Relieves Pain Without Drugs

Jun 30, 2022

Fathers’ Presence During Childhood Predicts Adult Testosterone Levels

Jun 29, 2022

Epigenetic Biomarkers Predict CVD Risk

Jun 28, 2022

Student Spearheads Ukraine Aid Efforts

Jun 27, 2022
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20220617_NM_0434
20220617_NM_0858
20220617_NM_0643
20220617_NM_0835
20220617_NM_0544
20220617_NM_0450
20220617_NM_0790
20220617_NM_0811
20220617_NM_0851
20220617_NM_0696
20220617_NM_0779
20220617_NM_0838

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2022 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.