Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Newly Formed Blood Vessels May Contribute to Eye Disease
Scientific Advances

Newly Formed Blood Vessels May Contribute to Eye Disease

By Will DossSep 10, 2018
Share
Facebook Twitter Email
A model of the human eye.

Newly formed blood vessels may be cracks in the barrier between the bloodstream and the eye, according to a Northwestern Medicine study published in the Proceedings of the National Academy of Sciences.

A novel experiment led by Jing Jin, MD, PhD, assistant professor of Medicine in the Department of Nephrology and Hypertension and senior author of the study, found that blood proteins linked to macular degeneration crossed the blood-ocular barrier of new blood vessels in mouse models.

“Newly formed blood vessels are involved in a number of human eye diseases,” Jin said. “Our method characterizes the protein basis for that barrier permeability.”

Some proteins can regularly cross the blood-ocular barrier, but others are prevented from entering the eye. This selective protein permeability is a feature of several other barriers across the body, including the blood-brain barrier and blood-placental barrier.

Jeffrey Savas, PhD, assistant professor of Neurology in the Division of Behavioral Neurology and a co-author of the study, sparked the current investigation when he devised a method to mark mouse models’ proteins with nitrogen-15, a nitrogen isotope slightly heavier than normal nitrogen.

In Savas’ technique, mice are fed a diet containing nitrogen-15 and without normal nitrogen for three months, during which time the mice incorporate nitrogen-15 to make proteins. These “heavy” proteins are detectable by mass spectrometer, an instrument that detects molecules by weight.

Jing Jin, MD, PhD, assistant professor of Medicine in the Department of Nephrology and Hypertension was senior author of a study published in Proceedings of the National Academy of Sciences.

In the current study, Jin and his colleagues drew blood from nitrogen-15 mice and injected it into normal mice with one of two eyes induced for new blood vessel growth. Within hours, Jin detected nitrogen-15-labeled proteins in both eyes, but only the induced eye let through certain immune suppressor proteins linked to age-related macular degeneration.

“These new vessels are different when compared to older or more typical vessels in the eye,” Jin said. “There are some pathological consequences associated with this.”

In the future, Jin hopes to explore these differences through a collaboration with Susan Quaggin, MD, chief of Nephrology and Hypertension in the Department of Medicine, director of the Feinberg Cardiovascular and Renal Research Institute and co-author of the study. Quaggin’s laboratory has designed a number of mouse models with genetic eye disease, which may respond differently to Jin’s permeability experiments when compared to the injury-induced mouse models.

In addition, Jin is interested in selective permeability in other barriers, including the blood-brain barrier and kidney filtration barrier.

“In kidney disease, problems associated with its barrier functions cause blood proteins to leak into the urine,” Jin said. “We already know the difference between normal kidney filtration and disease-associated filtration, but now we want to know if there are intermediate steps.”

Pan Liu, PhD, postdoctoral fellow, was the lead author on the study, and other Northwestern co-authors include Benjamin Thomson, PhD, research associate and Natalia Khalatyan, research staff at the Simpson Querrey Center for Epigenetics.

Savas is also an assistant professor of Medicine and of Pharmacology and Quaggin is also the Charles H. Mayo, MD, Professor.

This work was supported by the National Institutes of Health grants R01 EY026286, R00 DC013805 and R01 EY025799.

Medicine Ophthalmology Research
Share. Facebook Twitter Email

Related Posts

Sex-Specific Mechanisms for Major Depressive Disorder Identified in Response to Dysregulated Stress Hormones

Mar 23, 2023

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

Comments are closed.

Latest News

Sex-Specific Mechanisms for Major Depressive Disorder Identified in Response to Dysregulated Stress Hormones

Mar 23, 2023

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

How ChatGPT Has, and Will Continue to, Transform Scientific Research

Mar 21, 2023

New Directions for HIV Treatment

Mar 21, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM651
20230317_NM610
20230317_NM569
20230317_NM537
20230317_NM331
20230317_NM323
20230317_NM316
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.