Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Uncovering the Pathology of a Rare Pediatric Leukemia
Disease Discoveries

Uncovering the Pathology of a Rare Pediatric Leukemia

By Anna WilliamsMay 4, 2017
Share
Facebook Twitter Email
John Crispino
John Crispino, PhD, the Robert I. Lurie, MD, and Lora S. Lurie Professor of Medicine in the Division of Hematology and Oncology, was a co-author of the paper published in Cancer Cell.

A team of scientists has demonstrated the mechanism by which ETO2-GLIS2, a gene fusion, promotes the development of an aggressive form of pediatric leukemia. The findings, published in Cancer Cell, also reveal an opportunity for the development of therapeutics.

The study was co-authored by John Crispino, PhD, the Robert I. Lurie, MD, and Lora S. Lurie Professor of Medicine in the Division of Hematology and Oncology.

Acute megakaryoblastic leukemia (AMKL), a rare type of blood cancer predominantly found in children, has two major pediatric subgroups: AMKL in patients with Down syndrome and those without. While the disease in those with Down syndrome (DS) is relatively well-defined and carries a good prognosis, non-DS AMKL is much less well-understood.

Recently, scientists discovered that a gene fusion called ETO2-GLIS2 — produced by an inversion on chromosome 16 — is present in 20 to 30 percent of cases of non-DS AMKL, and is associated with a very poor patient prognosis. But up until now, it was unclear exactly how this gene fusion blocks normal cell differentiation, a hallmark of leukemia.

In the current study, the scientists illustrated how ETO2-GLIS2 induces an irregular transcription network that underlies AMKL. They further demonstrated that expression of a peptide that inhibits ETO2-GLIS2 oligomerization could release the differentiation block — insights which could inform the development of novel therapeutics.

“Acute megakaryoblastic leukemia is a devastating blood cancer that requires new targeted and efficacious therapies,” Crispino said. “The discovery of the mechanism by which ETO2-GLIS2 fusion promotes leukemia provides important new insights into ways to target these malignant cells.”

Crispino is also a professor of Biochemistry and Molecular Genetics and a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

Pediatric research at the Ann & Robert H. Lurie Children’s Hospital of Chicago is conducted through the Stanley Manne Children’s Research Institute.

The research, led by scientists at the French National Institute of Health and Medical Research (INSERM), was supported by the Institut National Du Cancer, Fédération Enfants et Santé and Société Française de lutte contre les Cancers et les Leucémies de l’Enfant et l’Adolescent, Association Laurette Fugain, a José Carreras EHA award, Fondation ARC, Fondation Gustave Roussy, SIRIC-SOCRATE, Fondation pour la Recherche Médicale, Cancéropôle Ile de France, INCa-PlanCancer “Soutien pour la formation” 2009–2013, Fondation de France, Lady Tata Foundation, and Gustave Roussy Genomic Core Facility.

Cancer Research
Share. Facebook Twitter Email

Related Posts

Mapping Neural Activity Patterns and Odor Perception  

Sep 28, 2023

Small, Implantable Device Could Sense and Treat Cancer

Sep 26, 2023

Gene Linked to Glioblastoma Stem Cell Self-Renewal and Immunosuppression

Sep 26, 2023

Comments are closed.

Latest News

Medical Education Day Celebrates Mentorship and Equity

Sep 29, 2023

Mapping Neural Activity Patterns and Odor Perception  

Sep 28, 2023

Lloyd-Jones Announces He is Stepping Down as Chair of Preventive Medicine

Sep 27, 2023

Small, Implantable Device Could Sense and Treat Cancer

Sep 26, 2023

Gene Linked to Glioblastoma Stem Cell Self-Renewal and Immunosuppression

Sep 26, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230927_MedEdDay_Sargent_6
20230927_MedEdDay_Sargent_3
20230927_MedEdDay_Sargent_1
20230927_MedEdDay_Posters_Patel_2
20230927_MedEdDay_Posters_Patel_1
20230927_MedEdDay_Posters_Panko_1
20230927_MedEdDay_Posters_4
20230927_MedEdDay_Posters_3
20230927_MedEdDay_Posters_2
20230927_MedEdDay_Posters_1
20230927_MedEdDay_Awards_6
20230927_MedEdDay_Awards_5

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.