Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Huntington’s Disease Linked to Dysfunction of Brain Structure
Disease Discoveries

Huntington’s Disease Linked to Dysfunction of Brain Structure

By Michelle MohneyDec 21, 2016
Share
Facebook Twitter Email
Mark Bevan, PhD, Psychiatry
Mark Bevan, PhD, professor of Physiology, was the senior author of the study that identified a link between Huntington’s disease and dysfunction of the subthalamic nucleus.

Northwestern Medicine scientists have identified a link between Huntington’s disease and dysfunction of the subthalamic nucleus, a component of the basal ganglia, a group of brain structures critical for movement and impulse control, in a study published in the journal eLife.

Huntington’s disease is characterized by the progressive loss of nerve cells in the brain and affects approximately 1 in 10,000 people. This fatal disorder is caused by a hereditary defect in a single gene.

“Although the genetic basis of the disease is well established, why the mutation leads to the expression of symptoms and loss of brain tissue remains poorly understood,” explained senior author Mark Bevan, PhD, professor of Physiology at Northwestern University Feinberg School of Medicine.

The debilitating symptoms of Huntington’s disease typically manifest in adulthood and involve loss of motor and cognitive function, depression and personality changes. From the point of onset, symptoms develop and intensify over the following 10 to 25 years until death, typically due to complications associated with the disease.

“While research into Huntington’s disease has focused on other parts of the basal ganglia, the subthalamic nucleus has been largely overlooked,”  Bevan said. “This is surprising because patients with Huntington’s disease have fewer nerve cells in the subthalamic nucleus. People who have suffered damage to the subthalamic nucleus exhibit excessive movement and impulsive behavior, similar to patients with Huntington’s disease.”

mt-rogfp
Energy producing mitochondria (labelled in green) of subthalamic nucleus neurons (marked with arrows) are subject to increased oxidative stress in Huntington’s disease mice.

Using mice genetically engineered to carry the Huntington’s disease gene, scientists discovered the electrical activity of the subthalamic nucleus was lost. Furthermore, impaired subthalamic activity was caused by anomalous receptor signaling, leading to defective energy metabolism and accumulation of damaging oxidants. The authors also found abnormalities in the subthalamic nucleus occur earlier than in other brain regions, and that subthalamic nucleus nerve cells progressively degenerate as the mice age, mirroring the human pathology of Huntington’s disease.

“Our findings suggest early problems in the subthalamic nucleus not only contribute to the symptoms of Huntington’s disease, but are also likely to impair the processing capacity and health of other brain structures, more traditionally associated with the disease,” Bevan said.

Currently, there is no cure for Huntington’s disease; treatment can only alleviate some of the symptoms. A better understanding of aberrant brain receptor signaling that leads to nerve cell dysfunction could reveal a target for therapy, according to the authors.

Additional Northwestern study authors include: lead author Jeremy Atherton, PhD, research assistant professor of Physiology; D. James Surmeier, PhD, chair of Physiology; David Wokosin, PhD, research associate professor of Physiology; Eileen McIver; and Matthew Mullen.

The research was funded by the CHDI Foundation and grants 2R37 NS041280 and 2P50 NS047085 from the National Institute of Neurological Disorders and Stroke of the National Institutes of Health.

Neurology and Neuroscience Research
Share. Facebook Twitter Email

Related Posts

Dissolving Implantable Device Relieves Pain Without Drugs

Jun 30, 2022

Fathers’ Presence During Childhood Predicts Adult Testosterone Levels

Jun 29, 2022

Epigenetic Biomarkers Predict CVD Risk

Jun 28, 2022

Comments are closed.

Latest News

Physician Assistant Students Embrace ‘Shades of Purple’

Jul 1, 2022

Dissolving Implantable Device Relieves Pain Without Drugs

Jun 30, 2022

Fathers’ Presence During Childhood Predicts Adult Testosterone Levels

Jun 29, 2022

Epigenetic Biomarkers Predict CVD Risk

Jun 28, 2022

Student Spearheads Ukraine Aid Efforts

Jun 27, 2022
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20220617_NM_0434
20220617_NM_0858
20220617_NM_0643
20220617_NM_0835
20220617_NM_0544
20220617_NM_0450
20220617_NM_0790
20220617_NM_0811
20220617_NM_0851
20220617_NM_0696
20220617_NM_0779
20220617_NM_0838

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2022 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.