Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » New Insights Into Signaling Pathway Could Lead to Novel Therapies for Neurological Disorders
Scientific Advances

New Insights Into Signaling Pathway Could Lead to Novel Therapies for Neurological Disorders

By Anna WilliamsDec 19, 2016
Share
Facebook Twitter Email
Geoffrey Swanson, PhD, professor of Pharmacology, was the principal investigator of the study, which showed an unexpected signaling pathway present in group I metabotropic glutamate receptors.

Northwestern Medicine scientists have demonstrated an alternate method of signaling by a class of proteins called group I metabotropic glutamate receptors, which are thought to be promising targets in the treatment of a variety of neurological and psychiatric disorders.

The findings, recently published in Nature Communications, could inform ongoing drug development for a number of pathologies, including schizophrenia, pain, Parkinson’s disease and especially fragile X syndrome, a genetic condition that causes developmental disabilities.

The group I metabotropic glutamate receptors, called mGluR1 and mGluR5, serve as modulators of nerve cell excitability and synaptic transmission, or the communication between neurons. Traditionally, they have been described as signaling through a process called G-protein coupling.

In the current study, however, the scientists demonstrated that not all signaling by group I mGluRs is mediated by G proteins. In fact, in some cases they utilize pathways requiring a different protein called β-arrestin2.

“Given that group I mGluRs seem like promising drug targets, at least in these early days, you want to know more about how they really work. And that’s where our study comes in,” said Geoffrey Swanson, PhD, professor of Pharmacology, the lead author of the paper. “We showed that the classical model is too simple, and demonstrated an unexpected way of signaling, downstream of receptor activation.”

By comparing normal mice with mice that lacked either β-arrestin1 or β-arrestin2, and examining various physiological parameters, they discovered that β-arrestin2 was necessary for some forms of mGluR signaling that change the strength of excitatory synapses in the hippocampus.

Future novel drugs might manipulate either pathway, giving scientists more flexibility in how they might tackle neurological disorders.

“That’s the promise of this study,” Swanson said. “If you understand more about how these receptors signal at a basic level, then it allows people in drug development to think in new and different ways about targeting the activity of those receptors in order to achieve a beneficial effect.”

Swanson hopes future research will help understand whether this mode of signaling is unique to the synapses examined in the study, or whether the findings are to some extent generalizable throughout the central nervous system.

The paper’s first author is Andrew Eng, ’16 PhD. Other Northwestern co-authors include postdoctoral fellow Tristan Hedrick, ’13 PhD, and Daniel Kelver.

The research was supported by National Institute of Neurological Diseases and Stroke (NINDS) grant R21NS088916-01.

Neurology and Neuroscience Pharmacology Research
Share. Facebook Twitter Email

Related Posts

Hospitals Bound to Patient Safety Rules that Aren’t all Backed by Evidence

Jun 24, 2022

Identifying Protein Interactions that Promote Cancer Growth

Jun 24, 2022

Calcium Channel Blockers May Improve Chemotherapy Response

Jun 21, 2022

Comments are closed.

Latest News

Hospitals Bound to Patient Safety Rules that Aren’t all Backed by Evidence

Jun 24, 2022

Identifying Protein Interactions that Promote Cancer Growth

Jun 24, 2022

Combination Treatment May Improve Quality of Life in Kidney Cancer

Jun 23, 2022

Calcium Channel Blockers May Improve Chemotherapy Response

Jun 21, 2022

Expanded Role for Calcium Channels in T-Cells

Jun 17, 2022
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20220607_Feinberg Campus_0070
20220607_Feinberg Campus_0066
20220607_Feinberg Campus_0054
Northwestern University 2022. Photo by Jim Prisching
20220607_Feinberg Campus_0077
20220607_Feinberg Campus_0063
20220607_Feinberg Campus_0111
20220607_Feinberg Campus_0083
20220607_Feinberg Campus_0018
20220607_Feinberg Campus_0023
20220607_Feinberg Campus_0072 (2)
20220607_Feinberg Campus_0120

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2022 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.