Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Discovery About Zinc’s Role May Help in Future Fertility Treatments
Uncategorized

Discovery About Zinc’s Role May Help in Future Fertility Treatments

By medwebAug 17, 2010
Share
Facebook Twitter Email

What Makes a Good Egg and Healthy Embryo?

Discovery About Zinc’s Role May Help in Future Fertility Treatments

Fertility

Scientists as well as fertility doctors have long tried to figure out what makes a good egg that will produce a healthy embryo. It’s a particularly critical question for fertility doctors deciding which eggs isolated from a woman will produce the best embryos and, ultimately, babies.

New research reveals healthy eggs need a tremendous amount of zinc to reach maturity and be ready for fertilization — a finding that may ultimately help physicians assess the best eggs for fertility treatment, according to a study from Northwestern University.

“Understanding zinc’s role may eventually help us measure the quality of an egg and lead to advances in fertility treatment,” said Alison Kim, a postdoctoral fellow in obstetrics and gynecology at Northwestern University Feinberg School of Medicine. “Currently we can’t predict which eggs isolated from a woman produce the best embryos and will result in a baby. Not all eggs are capable of becoming healthy embryos.”

There’s no link yet to zinc content in the egg and the nutritional status of women, but Kim plans to research that area.

Kim is the lead author of a paper that will be published in the September issue of the journal Nature Chemical Biology. The article will be featured on the cover. Co-senior authors are Tom O’Halloran, PhD, director of the Chemistry of Life Processes Institute at Northwestern and associate director of basic sciences at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, and Teresa Woodruff, PhD, the Thomas J. Watkins Professor of Obstetrics and Gynecology and executive director of the Institute for Women’s Health Research at Feinberg. Woodruff also is a member of the Lurie Cancer Center.

Northwestern scientists, working with mice, discovered the egg becomes ravenous for zinc and acquires a 50 percent increase in the metal in order to reach full maturity before becoming fertilized. The flood of zinc appears to flip a switch so the egg can progress through the final stages of meiosis. Meiosis is when the egg sheds all but one copy of its maternal chromosomes before it can be fertilized by a sperm and become an embryo.

“Zinc helps the egg exit from a holding pattern to its final critical stage of development,” said O’Halloran, the Charles E. and Emma H. Morrison Professor of Chemistry in the Weinberg College of Arts and Sciences at Northwestern. “It’s on the knife’s edge of becoming a new life form or becoming a cell that dies. It only has 24 hours. Zinc seems to be a key switch that helps control whether the egg moves forward in its development stage. “

Kim found there were approximately 60 billion zinc atoms in a mouse egg just before the egg was ready to be fertilized. She measured the zinc content of the eggs using a technique called synchrotron-based X-ray fluorescence microscopy through collaboration with the Advanced Photon Source at Argonne National Laboratory. This method allowed detection of multiple metals in single eggs using the characteristic X-ray signature of each element.

Zinc levels were significantly higher in eggs than other important metals such as iron and copper. Zinc was the only metal to change significantly in concentration during the maturation process.

Northwestern scientists also used small molecules to block the accumulation of zinc by the maturing egg. They found an insufficient accumulation of zinc caused all the eggs to pause prematurely at the beginning stage of meiosis. The progression of meiosis was restored by returning zinc to the eggs.

Research on the role of zinc was funded by a W.M. Keck Foundation Medical Research Award, the Center for Reproductive Science through the NIH/National Institute of Child Health and Human Development and the Chemistry of Life Processes Institute at Northwestern University through NIH/National Institute of General Medicine. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the Office of Basic Energy Sciences in the Office of Science of the U.S. Department of Energy.

Share. Facebook Twitter Email

Related Posts

Mar 29, 2023

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

Lurie Cancer Center Receives Merit Extension from NCI

Oct 20, 2021

Drug Combination May Reduce Risk of Leukemia Relapse

Mar 26, 2020

Comments are closed.

Latest News

Celebrating Advances in Alzheimer’s Research and Clinical Care

May 26, 2023

Understanding How Hormones Influence Anemia

May 25, 2023

Groundbreaking Geneticist Delivers Epigenetics Lecture

May 24, 2023

CT Scan Best at Predicting Heart Disease Risk in Middle Age

May 23, 2023

Investigating the Benefits of Salt Substitutes in Elderly Patients

May 22, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230506_NM569
20230506_NM564
20230506_NM563
20230506_NM559
20230506_NM555
20230506_NM549
20230506_NM508
20230506_NM474
20230506_NM136
20230506_NM124
20230506_NM118
20230506_NM094

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.