Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » ‘Signal’ Enables Parasite to Target Blood Cells
Uncategorized

‘Signal’ Enables Parasite to Target Blood Cells

By medwebJan 1, 2005
Share
Facebook Twitter Email

‘Signal’ Enables Parasite to Target Blood Cells

CHICAGO—Northwestern University researchers have identified a key molecular “signal” that allows malarial parasites to release virulence proteins inside human red blood cells.

The investigators, led by Kasturi Haldar, PhD, and N. Luisa Hiller, also found that the process by which the malarial parasite remodels red blood cells is far more complex than scientists previously had realized.

Dr. Haldar is Charles E. and Emma H. Morrison Professor of Pathology and professor of microbiology—immunology and Hiller a sixth-year student in the Integrated Graduate Program in the Life Sciences at Northwestern University’s Feinberg School of Medicine.

Other key researchers on this study were Souvik Bhattacharjee, Christiaan van Ooij, Konstantinos Liolios, Travis Harrison, and Carlos Estrano.

Findings from the Northwestern study were published in the December 10 issue of the journal Science.

Malaria is a blood-borne illness transmitted by mosquitoes. Forty percent of the world’s population lives at risk for infection, and between 200 and 300 million people are afflicted each year, particularly in underdeveloped and impoverished tropical and sub-Saharan countries.

Plasmodium falciparum is the most virulent form of the four human malarial parasite species, killing more than 1 million children each year and responsible for 25 percent of infant mortality in Africa, according to the World Health Organization.

Following invasion of human red blood cells—the “blood stage” of malaria—P. falciparum exports proteins that modify the properties of the host red blood cell membrane, are required for parasite survival, and are responsible for fatal pathologies such as cerebral or “brain” malaria as well as placental malaria.

It is during the “blood stage” of malaria when symptoms of malaria occur. These symptoms include fever and flu-like symptoms, such as chills, headache, muscle aches, and fatigue, as well as complex disease pathologies of cerebral malaria (leading to coma), metabolic acidosis and anemia. Immunity is slow to develop, and left untreated, malaria may be fatal, taking its greatest toll on children and pregnant women.

How the malaria parasite targets proteins to the host red blood cell was essentially unknown. Using cutting-edge bioinformatic techniques combined with functional studies, the researchers identified a “signal” on exported parasite proteins that is required for their secretion into the host.

This signal is present on more than 320 proteins, which represents approximately 6 percent of total proteins encoded in the P. falciparum genome, indicating that modification of this export signal not only established a major host-targeting pathway but also enabled the recognition of a wide range of proteins (a “secretome”) that present high-value candidate effectors of disease and infection.

Results revealed the power of functional informatics to lead scientists from the tip of the iceberg (5 to 10 parasite proteins exported to the erythrocyte) to the global complexity of infection (where the parasite is exporting dozens of proteins).

Remarkably, 91 of the secretome proteins share few or no similarities with known cellular proteins, emphasizing novel and complex ways in which the malarial parasite establishes infection in human red blood cells.

These proteins represent a vastly expanded pool of major candidate targets to block blood stage infection as well as complex disease pathologies associated with acute and severe malaria.

(Reprinted from the Northwestern University News Center.)

Share. Facebook Twitter Email

Related Posts

Lurie Cancer Center Receives Merit Extension from NCI

Oct 20, 2021

Drug Combination May Reduce Risk of Leukemia Relapse

Mar 26, 2020

Rewriting the Role of a Transcription Factor

Mar 19, 2020

Comments are closed.

Latest News

Medical School Faculty Named AAAS Fellows

Jan 31, 2023

Transforming the Way Cancer Vaccines are Designed and Made

Jan 30, 2023

Calcium Channels Regulate Neuroinflammation and Neuropathic Pain 

Jan 27, 2023

Changes in Medical School Leadership

Jan 26, 2023

Shortage of Mental Health Professionals Linked to Increase in Youth Suicides

Jan 25, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
Feinberg_In_Vivo_20221209_tcrawford-24
Feinberg_In_Vivo_20221209_tcrawford-16
Feinberg_In_Vivo_20221209_tcrawford-14
Feinberg_In_Vivo_20221209_tcrawford-5
Feinberg_In_Vivo_20221209_tcrawford-6
Feinberg_In_Vivo_20221209_tcrawford-10
Feinberg_In_Vivo_20221209_tcrawford-8
Feinberg_In_Vivo_20221209_tcrawford-18
Feinberg_In_Vivo_20221209_tcrawford
Feinberg_In_Vivo_20221209_tcrawford-23
Feinberg_In_Vivo_20221209_tcrawford-25
Feinberg_In_Vivo_20221209_tcrawford-26

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.