Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Regulator of Cancer ‘Stemness’ Discovered
Disease Discoveries

Regulator of Cancer ‘Stemness’ Discovered

By Will DossApr 26, 2022
Share
Facebook Twitter Email
Daniela Matei, MD, the Diana, Princess of Wales Professor of Cancer Research and chief of Reproductive Science in Medicine in the Department of Obstetrics and Gynecology, was senior author of the study published in the Journal of Clinical Investigation.

The protein FOXK2 promotes survival of cancer stem cells in ovarian cancer, according to a Northwestern Medicine study published in the Journal of Clinical Investigation.

Blocking this protein could reduce recurrence of cancer after initial treatment, according to Daniela Matei, MD, the Diana, Princess of Wales Professor of Cancer Research, chief of Reproductive Science in Medicine in the Department of Obstetrics and Gynecology and senior author of the study.

“If you use an inhibitor for this pathway, the cancer stem cells will die instead of regenerating a tumor,” said Matei, who is also a professor of Medicine in the Division of Hematology and Oncology.

When treated early enough, ovarian cancer usually follows a predictable course of remission after chemotherapy and subsequent relapse up to two years later. This long layoff may be caused by cancer stem cells (CSCs) — a small population of cells within tumors capable of self-renewal and differentiation. “Chemotherapy can eliminate most cells, but in some cancers, the stem cells are left behind, waiting until conditions are more favorable,” Matei said.

In the current study, Matei and her collaborators compared gene expression in ovarian CSCs and normal ovarian cancer cells, looking for genes with higher expression in CSCs. One gene with much higher expression in CSCs was one that coded for the protein FOXK2, a little-known transcription factor that has previously been studied in the context of metabolism.

Ovarian cancer cell-derived spheroid.

Investigators including lead author Yaqi Zhang, a student in the Driskill Graduate Program in Life Sciences (DGP), found FOXK2 directly regulated IREI-alpha, a key sensor that activates the unfolded protein response (UPR).

External stressors to cells — in the case of CSCs, chemotherapy or lack of oxygen from cells being clumped together — can cause misfolded proteins. The UPR ensures cells aren’t harmed by those malformed proteins, halting protein translation and degrading the misfolded proteins.

Blocking expression of FOXK2 in CSCs — and subsequently reducing activation of the UPR — inhibited growth of CSCs, reducing their so-called “stemness,” making them more like normal cells.

“We demonstrated this pathway is very important for stemness,” Zhang said.

Yaqi Zhang, student in the Driskill Graduate Program in Life Sciences (DGP), was lead author of the study published in the Journal of Clinical Investigation.

The findings represent one possible method to target CSCs in cancer, Matei said. While current inhibitors are crude and have off-target effects, more sophisticated inhibitors could be used after chemotherapy to reduce recurrence of cancer.

“We are very interested in new inhibitors for this pathway,” Matei said.

Matei is a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

This study was supported by U.S. Department of Veterans Affairs grant BX000792-09A2 and National Cancer Institute grant U54 CA268084-02.

Cancer Research Women's Health
Share. Facebook Twitter Email

Related Posts

Shortage of Mental Health Professionals Linked to Increase in Youth Suicides

Jan 25, 2023

Understanding How Childhood Brain Tumors Develop

Jan 23, 2023

Medical School Establishes New Center for Psychiatric Neuroscience

Jan 19, 2023

Comments are closed.

Latest News

Changes in Medical School Leadership

Jan 26, 2023

Shortage of Mental Health Professionals Linked to Increase in Youth Suicides

Jan 25, 2023

Northwestern Medicine Scholars Program Inspires a New Generation of Physicians and Scientists 

Jan 24, 2023

Understanding How Childhood Brain Tumors Develop

Jan 23, 2023

Medical School Establishes New Center for Psychiatric Neuroscience

Jan 19, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
Feinberg_In_Vivo_20221209_tcrawford-24
Feinberg_In_Vivo_20221209_tcrawford-16
Feinberg_In_Vivo_20221209_tcrawford-14
Feinberg_In_Vivo_20221209_tcrawford-5
Feinberg_In_Vivo_20221209_tcrawford-6
Feinberg_In_Vivo_20221209_tcrawford-10
Feinberg_In_Vivo_20221209_tcrawford-8
Feinberg_In_Vivo_20221209_tcrawford-18
Feinberg_In_Vivo_20221209_tcrawford
Feinberg_In_Vivo_20221209_tcrawford-23
Feinberg_In_Vivo_20221209_tcrawford-25
Feinberg_In_Vivo_20221209_tcrawford-26

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.