Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Regulating Sodium Channels in Epilepsy
Disease Discoveries

Regulating Sodium Channels in Epilepsy

By Anna WilliamsFeb 6, 2017
Share
Facebook Twitter Email
neurons-thompsongeorge
Neurons marked with fluorescence, which the scientists used for identification of specific classes of neural cells.

A new Northwestern Medicine study may help explain why patients with the same epilepsy gene mutation experience different levels of disease severity. The findings, published in the Proceedings of the National Academy of Sciences (PNAS), also reveal new insights into sodium channel regulation and a potential therapeutic target for epilepsy treatment.

Christopher Thompson, PhD, research assistant professor of Pharmacology, was the first author of the study, led by principal investigator Alfred George, Jr., MD, chair and Magerstadt Professor of Pharmacology.

Epilepsy, which affects 1 in 100 people worldwide, is a neurological disorder characterized by recurrent seizures. Epilepsy often has a genetic basis, especially through mutations in genes that encode sodium channels, such as the human SCN2A gene. But previously, it had been unclear why patients with the same gene mutation show a wide range of disease severity, such as in their frequency of seizures.

In the current study, the scientists investigated this variability using a mouse model of Scn2a epilepsy, developed by co-author Jennifer Kearney, PhD, associate professor of Pharmacology. The mice all had epilepsy caused by the same mutation on the Scn2a gene, but they came from two different laboratory mice strains — or genetic backgrounds — and displayed various degrees of epilepsy severity.

“We looked at some of the basic properties of brain cells that are abnormal in epilepsy and found that brain cells from animals that are more severely affected by epilepsy are hyperexcitable, compared to brain cells from animals who are less affected,” Thompson said. “This discovery prompted us to ask ‘why?’ ”

George_1501
Alfred George, Jr., MD, chair of Pharmacology, was the principal investigator of the research, which uncovered novel findings about sodium channel regulation in a mouse model of epilepsy.

The scientists discovered that such differences in the excitability of neurons correlated with changes in the behavior of sodium channels, which were modulated by an enzyme called calcium/calmodulin protein kinase II (CaMKII). When CaMKII was inhibited, neuronal excitability was suppressed — suggesting that targeting CaMKII activity may be a novel route to treating epilepsy.

“Chris traced the differences to a very fine molecular detail,” said George, also the director of the Center for Pharmacogenomics. “Not only did the findings explain the varying severity of epilepsy, but they also revealed a previously underappreciated pathway by which brain sodium channels are regulated — something that could be exploited for therapy.”

The paper was also co-authored by Nicole Hawkins, PhD, a research associate in Kearney’s lab. All four scientists came to Northwestern in 2014 from Vanderbilt University, where this work originated. “Once we were in a new environment, and interacting with people who thought differently, we began to think differently, and that greatly benefited the project,” George said. “This paper is the result of a long-standing collaboration that found new life here at Northwestern.”

In ongoing research, the scientists are now investigating whether their discoveries might be generalizable to other gene mutations and models of epilepsy.

The findings might even have implications in other pathologies, as SCN2A is also associated with disorders like autism.

The research was supported by National Institutes of Health (NIH) grants NS053792 and NS032387 and Epilepsy Foundation Postdoctoral Fellowship 189645.

Neurology and Neuroscience Research
Share. Facebook Twitter Email

Related Posts

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

How ChatGPT Has, and Will Continue to, Transform Scientific Research

Mar 21, 2023

Comments are closed.

Latest News

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

How ChatGPT Has, and Will Continue to, Transform Scientific Research

Mar 21, 2023

New Directions for HIV Treatment

Mar 21, 2023

Humans are Not Just Big Mice: Identifying Science’s Muscle-Scaling Problem

Mar 20, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642
20230317_NM643
20230317_NM624
20230317_NM303
20230317_NM551
20230317_NM559
20230317_NM536
20230317_NM508

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.