Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Bone Marrow Cells Used in Bladder Regeneration
Uncategorized

Bone Marrow Cells Used in Bladder Regeneration

By Roger AndersonFeb 22, 2013
Share
Facebook Twitter Email

Using a novel approach that capitalizes on the potential of two distinct cell populations transplanted from a person’s bone marrow, Arun K. Sharma, PhD, research assistant professor in urology, was able to regenerate bladder tissue. (pictured here)

A new approach to bladder regeneration is capitalizing on the potential of two distinct cell populations harvested from a patient’s healthy bone marrow. 

The Northwestern Medicine® research, published in the Proceedings of the National Academy of Sciences by Arun K. Sharma, PhD, research assistant professor in urology, and colleagues, is an alternative to contemporary tissue-engineering strategies. The bone marrow cells are being used to recreate the organ’s smooth muscle, vasculature, and nerve tissue. 

“We are manipulating a person’s own disease-free cells for bladder tissue reformation,” said Sharma, a member of the Institute for BioNanotechnology in Medicine and Ann & Robert H. Lurie Children’s Hospital of Chicago Research Center. “We have used the spina bifida patient population as a proof of concept model because those patients typically have bladder dysfunction. However, this regeneration approach could be used for people suffering from a variety of bladder issues where the bone marrow microenvironment is deemed normal.” 

Arun K. Sharma, PhD, research assistant professor in urology, has dedicated his lab to developing synthetic bladder tissue that helps restore regular urinary function in those with bladder disease, while avoiding issues associated with current surgical procedures.

In end-stage neurogenic bladder disease – an illness often associated with spinal cord diseases like spina bifida – the nerves which carry messages between the bladder and the brain do not work properly, causing an inability to pass urine. The most common surgical option, augmentation cystoplasty, involves placing a “patch” derived from an individual’s bowel over a part of the diseased organ in order to increase its size. The current “gold standard,” the procedure remains problematic because the bowel tissue introduces long-term complications like the development of electrolyte imbalance and bladder cancer. 

Because Sharma’s procedure does not use bowel tissue, it offers the benefits of augmentation without the association of long-term risks. His technique combines stem and progenitor cells from a patient’s bone marrow with a synthetic scaffold created in the lab of Guillermo Ameer, ScD, professor of biomedical engineering and surgery. The scaffold takes the place of the traditional patch. 

“We decided to use material that has the ability to be tailored to simulate mechanical properties of the bladder,” said Sharma, director of pediatric urological regenerative medicine at Lurie Children’s. “Using the elastomer created by Dr. Ameer and the bone marrow stem and progenitor cells, I believe that we have developed a technique that can potentially be used in lieu of current bladder augmentation procedures. However, further study is needed.” 

Sharma says he now plans to test the procedure in larger animal models. His initial research was supported in part by an Excellence in Academic Medicine grant funded by the Illinois Department of Healthcare and Family Services.

Patient Care Research
Share. Facebook Twitter Email

Related Posts

Investigating Protein’s Role in Hearing Loss

Mar 27, 2023

Sex-Specific Mechanisms for Major Depressive Disorder Identified in Response to Dysregulated Stress Hormones

Mar 23, 2023

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Comments are closed.

Latest News

Weintraub Appointed to Illinois Supreme Court Commission on Elder Law

Mar 28, 2023

Investigating Protein’s Role in Hearing Loss

Mar 27, 2023

Sex-Specific Mechanisms for Major Depressive Disorder Identified in Response to Dysregulated Stress Hormones

Mar 23, 2023

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM651
20230317_NM610
20230317_NM569
20230317_NM537
20230317_NM331
20230317_NM323
20230317_NM316
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.