Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » New ‘Bouncer’ Molecule Halts Rheumatoid Arthritis
Uncategorized

New ‘Bouncer’ Molecule Halts Rheumatoid Arthritis

By medwebSep 7, 2011
Share
Facebook Twitter Email

New ‘Bouncer’ Molecule Halts Rheumatoid Arthritis

Protective protein prevents immune system from ravaging joints and bones

Researchers at Northwestern University Feinberg School of Medicine have discovered why the immune cells of people with rheumatoid arthritis become hyperactive and attack the joints and bones. The immune cells have lost their bouncer, the burly protein that keeps them in line the same way a bouncer in a nightclub controls rowdy patrons.

The Feinberg team has identified this bouncer, a protein called P21, which prevents immune cells from launching into their destructive rampage through the cartilage and bone. When the scientists developed and injected an imitation of the protein into an animal model of rheumatoid arthritis, the disease process was halted.

“The bouncer molecule stopped the immune cells from going crazy,” said lead author Harris Perlman, PhD, associate professor of rheumatology at Feinberg. “Imagine destructive customers in a bar, and the bouncer says, ‘You are going to behave!’ That’s P21. This discovery opens up a new avenue for future therapies, which are greatly needed for rheumatoid arthritis.”

Previous research by the Feinberg team showed people with rheumatoid arthritis were low in P21, but the protein’s role was unknown. The new study, which will be published in the journal Arthritis & Rheumatism, reveals the protein’s vital role in keeping the immune cells in check.

Currently, there is no effective, nontoxic way to stop the hyperactive immune cells, Perlman said.

To develop the new approach, Perlman and his team tested five different parts, called peptides, of P21. He slipped each peptide into a “ghostlike” molecule that he injected into mice with a rheumatoid arthritis-like disease. The molecule secretly infiltrated the immune cells. After the seven-day trial, one of the tested peptides had calmed the overactive immune cells without toxic effects. Next, Perlman plans a 30-day study with the same peptide to monitor efficacy and toxicity over a longer period of time.

Existing treatments for rheumatoid arthritis include low-level chemotherapy and steroids. These are not always effective, however, and they are frequently accompanied by side effects. A newer class of therapy, which is sometimes used in combination with chemotherapy and steroids, is biologic response modifiers. These are antibodies or other proteins that reduce the inflammation produced by the hyperactive immune cells. These biologics don’t work for everyone, though, and can be associated with side effects including the risk of infection.

The research was supported by the National Institutes of Health.

Members of the media, please contact Marla Paul via e-mail or at (312) 503-8928 for more information about this story.

Share. Facebook Twitter Email

Related Posts

Lurie Cancer Center Receives Merit Extension from NCI

Oct 20, 2021

Drug Combination May Reduce Risk of Leukemia Relapse

Mar 26, 2020

Rewriting the Role of a Transcription Factor

Mar 19, 2020

Comments are closed.

Latest News

Hospitals Bound to Patient Safety Rules that Aren’t all Backed by Evidence

Jun 24, 2022

Identifying Protein Interactions that Promote Cancer Growth

Jun 24, 2022

Combination Treatment May Improve Quality of Life in Kidney Cancer

Jun 23, 2022

Calcium Channel Blockers May Improve Chemotherapy Response

Jun 21, 2022

Expanded Role for Calcium Channels in T-Cells

Jun 17, 2022
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20220607_Feinberg Campus_0070
20220607_Feinberg Campus_0066
20220607_Feinberg Campus_0054
Northwestern University 2022. Photo by Jim Prisching
20220607_Feinberg Campus_0077
20220607_Feinberg Campus_0063
20220607_Feinberg Campus_0111
20220607_Feinberg Campus_0083
20220607_Feinberg Campus_0018
20220607_Feinberg Campus_0023
20220607_Feinberg Campus_0072 (2)
20220607_Feinberg Campus_0120

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2022 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.