Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
    • Podcast
  • Press Release
  • Media Coverage
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Paying Attention Sets Off Symphony of Cell Synchronization
Uncategorized

Paying Attention Sets Off Symphony of Cell Synchronization

By medwebJan 1, 2007
Share
Facebook Twitter Email

December 20, 2006

Contact: Pat Vaughan Tremmel at 847/491-4892 or at
p-tremmel@northwestern.edu

Paying Attention Sets Off Symphony of Cell Synchronization

EVANSTON, Ill.—You know the sensation. When something has your full attention you see it vividly. And when you don’t pay attention, you’re liable to miss something important. Now a new Northwestern University study sheds light on how attention operates.

The mystery of how attention improves the perception of incoming sensory stimulation has been a longtime concern of scientists. One hypothesis is that when you pay attention neurons produce stronger brain activity, as if the stimulus itself was stronger. That would mean that paying attention might make something appear more intense and possibly distort its actual appearance.

In the Northwestern study, EEG measures of brain activity were used to show precisely how attention alters brain activity. The team of psychologists and neuroscientists used a new strategy for understanding the mechanisms whereby sustained attention makes us process things more effectively, literally making the world come into sharper focus.

“When you pay attention cells aren’t only responding more strongly to stimuli,” said coauthor Marcia Grabowecky, PhD, research assistant professor of psychology in Northwestern’s Weinberg College of Arts and Sciences. “Rather a population of cells is responding more coherently. It is almost like a conductor stepping in to control a large set of unruly musicians in an orchestra so that they all play together. Cells synchronize precisely to the conductor’s cues.”

The article, “Attention Induces Synchronization-Based Response Gain in Steady-State Visual Evoked Potentials,” was published in the January 2007 issue of Nature Neuroscience.

All participants in the study wore a cap with 64 electrodes to record their brain waves. The brain waves fluctuated in sync with flickering stimuli that appeared on a computer screen. At any given time, two target patterns were shown, but subjects were told to pay attention to one and ignore the other. Sometimes the target patterns were fairly dim. At other times they were quite bright.

EEG responses from the participants showed more brain activity for brighter stimuli, as expected, but responses also varied depending on attention. The patterns of these brain waves allowed the investigators to obtain a thorough description of how attention altered neural function.

“For dynamic stimuli at the focus of attention, the timing of brain activity became more precisely synchronized with the flickering,” said Satoru Suzuki, PhD, associate professor of psychology at Northwestern and coauthor of the study.

The results suggest that attention can make a stimulus stand out by making brain responses to the stimulus more coherent. “This doesn’t change the stimulus but can make it more effective for guiding our behavior,” Dr. Grabowecky said.

“When you need to dig deep to summon that extra ounce of attention, it’s as if you engage a symphony of brain activity that can come to your rescue as millions of neurons together make the music that represents a vivid conscious experience,” added Ken Paller, PhD, professor of psychology at Northwestern and co-investigator of the study.

Besides Drs. Grabowecky, Suzuki, and Paller, the other authors of “Attention Induces Synchronization-Based Response Gain in Steady-State Visual Evoked Potentials” are Northwestern’s Yee Joon Kim and and Krishnakumar Muthu.

Share. Facebook Twitter Email

Related Posts

Lurie Cancer Center Receives Merit Extension from NCI

Oct 20, 2021

Drug Combination May Reduce Risk of Leukemia Relapse

Mar 26, 2020

Rewriting the Role of a Transcription Factor

Mar 19, 2020

Comments are closed.

Latest News

Epigenetic Biomarkers Predict CVD Risk

Jun 28, 2022

Student Spearheads Ukraine Aid Efforts

Jun 27, 2022

Hospitals Bound to Patient Safety Rules that Aren’t all Backed by Evidence

Jun 24, 2022

Identifying Protein Interactions that Promote Cancer Growth

Jun 24, 2022

Combination Treatment May Improve Quality of Life in Kidney Cancer

Jun 23, 2022
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20220617_NM_0434
20220617_NM_0858
20220617_NM_0643
20220617_NM_0835
20220617_NM_0544
20220617_NM_0450
20220617_NM_0790
20220617_NM_0811
20220617_NM_0851
20220617_NM_0696
20220617_NM_0779
20220617_NM_0838

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2022 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.