Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » New Technology Addresses Female Fertility Preservation
Uncategorized

New Technology Addresses Female Fertility Preservation

By medwebJul 1, 2006
Share
Facebook Twitter Email

Contact: Megan Fellman at (847) 491-3115 or at
fellman@northwestern.edu

New Technology Addresses Female Fertility Preservation

EVANSTON, Ill.—Women at risk for infertility, such as those needing cancer treatment, can freeze mature, fertilized eggs, but the process can take up to six weeks and for some this delay of treatment is not an option.

Immature follicles (the female egg and surrounding somatic cells) can be preserved at any time but are difficult to mature when removed from their normal environment.

A team of scientists from Northwestern University has developed a three-dimensional culture system that encapsulates follicles and allows immature eggs to grow and mature in vitro. (A follicle is a small spherical group of specialized support cells surrounding each egg.) This novel technology has already led to the live birth of healthy mice from in vitro grown follicles.

The results were published online in June in the journal Tissue Engineering.

The study shows that follicles grown individually in a three-dimensional biomaterial called alginate maintain normal connections between follicle and egg, resulting in the development of eggs, which can be fertilized and ultimately lead to healthy embryos and the birth of live mice. Previously developed methods of growing follicles or eggs outside of the body do not provide the three-dimensional support to maintain the follicle structure in which the egg must grow.

“While the research is in its early stages, this work has implications for the preservation of fertility for women and girls with cancer,” said Teresa K. Woodruff, PhD, professor of neurobiology and physiology who led the study together with Lonnie D. Shea, PhD, associate professor of chemical and biological engineering. “This system establishes a core technology for human egg banks for preservation of fertility.”

The technology mimics the ovary and its environment. Follicles (each follicle has one egg) from mice were grown in vitro until fully matured by providing the follicles and eggs with the necessary hormones for development while maintaining their normal architecture. The eggs were then used for in vitro fertilization. The fertilized eggs were implanted into a foster mother that was of a different strain than the donor egg and sperm, resulting in babies with a different coat color, proving that the births were the result of the cultured embyros. Both male and female offspring were fertile.

In addition to Drs. Woodruff and Shea, authors on the paper are Min Xu, PhD, and Pamela K. Kreeger, both from Northwestern.

The research was supported by the National Institute of Child Health and Human Development through the Northwestern University Specialized Centers Program in Reproductive Research (SCCPRR, U54).

Share. Facebook Twitter Email

Related Posts

Lurie Cancer Center Receives Merit Extension from NCI

Oct 20, 2021

Drug Combination May Reduce Risk of Leukemia Relapse

Mar 26, 2020

Rewriting the Role of a Transcription Factor

Mar 19, 2020

Comments are closed.

Latest News

Sex-Specific Mechanisms for Major Depressive Disorder Identified in Response to Dysregulated Stress Hormones

Mar 23, 2023

Pre-Surgery Immunotherapy May Increase Survival in Advanced Melanoma

Mar 23, 2023

Hormone Therapy Plus Current Treatments Improves Survival in Prostate Cancer

Mar 22, 2023

How ChatGPT Has, and Will Continue to, Transform Scientific Research

Mar 21, 2023

New Directions for HIV Treatment

Mar 21, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM651
20230317_NM610
20230317_NM569
20230317_NM537
20230317_NM331
20230317_NM323
20230317_NM316
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.