Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » “Fingerprints” for Biological Agents
Uncategorized

“Fingerprints” for Biological Agents

By medwebSep 9, 2002
Share
Facebook Twitter Email

September 9, 2002

Contact: Megan Fellman at (847) 491-3115 or at
fellman@northwestern.edu

“Fingerprints” for Biological Agents

EVANSTON, ILL.— Scientists at Northwestern University have developed a powerful new method for detecting infectious diseases, including those associated with many bioterrorism and warfare threats such as anthrax, tularemia, smallpox, and HIV.

A research team led by Chad A. Mirkin, PhD, director of Northwestern’s Institute for Nanotechnology, has invented a technique for creating thousands of DNA detection probes made of gold nanoparticles with individual molecules attached. Much like human fingerprints, these molecules act as unique signals for the presence of different biological agents. The new detection method, for instance, can easily distinguish smallpox’s distinct “fingerprint” from that of HIV.

“By providing a near infinite number of signals, this advance allows researchers to quickly and accurately screen a sample for an extraordinarily large number of diseases simultaneously,” said Dr. Mirkin, also George B. Rathmann Professor of Chemistry.

Results, which include testing for genetic markers for six biological agents including hepatitis A, smallpox and HIV, are published in the Aug. 30 issue of the journal Science. The new technology, which takes advantage of a technique called Raman spectroscopy, improves upon optical detection methods reported previously by Northwestern in Science.

Dr. Mirkin’s group has been pioneering the use of nanoparticles as a potential replacement for the more expensive polymerase chain reaction (PCR) and conventional fluorescence probes, the most widely used detection technology. It currently take days and sometimes weeks for results of genetic screening and disease diagnosis to come back from the laboratory.

“PCR was an extraordinary advance in diagnostics, but its complexity prohibits the development of easy-to-use diagnostic systems that can produce quick results in the field or in the doctor’s office,” Dr. Mirkin said. “Once a disruptive technology like PCR is invented, it creates a challenge for scientists to develop something even better.”

The new detection method involves designing probes for each disease agent. Each probe consists of a tiny gold particle approximately 13 nanometers in diameter. (In comparison, a human hair is 10,000 nanometers wide.) Attached to the particles are two key items: molecules that provide a unique signal (the “fingerprint”) when a light is shined on them and a single strand of DNA designed to recognize and bind a target of interest, such as smallpox or hepatitis A.

These designer probes are used in conjunction with a chip spotted with strands of DNA designed to recognize different disease targets. If a disease target is present in the sample being tested, it binds to the appropriate spot on the chip. Corresponding nanoparticle probes latch onto any matches. The chip is then washed and treated with ordinary photographic developing solution. Silver coats the gold nanoparticles where a match has taken place. A laser is scanned across the chip, and the signals for the probes are recorded. A unique “fingerprint” can be designed for each biological agent.

“The silver enhances the signal by many orders of magnitude, creating a highly sensitive method for detecting DNA,” Dr. Mirkin said. “Our technique seems to surpass conventional fluorescence-based methods in almost every category — sensitivity, selectivity, ease of use and speed — and has the potential to be very inexpensive.” The “fingerprinting” method also offers a greater number of distinct signals than conventional methods, meaning more diseases can be tested for at one time.

Other authors on the paper are postdoctoral associate YunWei Cao and graduate student Rongchao Jin, both of Northwestern. The research was supported by the Air Force Office of Scientific Research, the Defense Advanced Research Projects Agency, and the National Science Foundation. The technology has been licensed to Nanosphere of Northbrook, Illinois, for commercialization.

Education
Share. Facebook Twitter Email

Related Posts

Mar 7, 2023

A Day in the Life: Evan Edwards

Mar 7, 2023

Changes in Medical School Leadership

Jan 26, 2023

2022 Year in Review

Dec 29, 2022

Comments are closed.

Latest News

Humans are Not Just Big Mice: Identifying Science’s Muscle-Scaling Problem

Mar 20, 2023

AOA Honors New Members

Mar 20, 2023

Celebrating Feinberg’s 2023 Match Day

Mar 17, 2023

Predicting Risk of Blood Clots in Brain Tumors

Mar 16, 2023

Understanding How Exercise Induces Systemic Metabolic Benefits

Mar 15, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
_5NM1245
230204_SERIO_MANDELL_Feinberg_Formal_0928
_5NM1715
_5NM0526
_5NM1026 (1)
_5NM1906
_5NM2173
230204_SERIO_MANDELL_Feinberg_Formal_0896
230204_SERIO_MANDELL_Feinberg_Formal_1113
230204_SERIO_MANDELL_Feinberg_Formal_1868
230204_SERIO_MANDELL_Feinberg_Formal_1237
230204_SERIO_MANDELL_Feinberg_Formal_1172

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.