Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » Chronic Pain Reorganizes the Brain
Uncategorized

Chronic Pain Reorganizes the Brain

By medwebMar 10, 2009
Share
Facebook Twitter Email

Chronic Pain Reorganizes the Brain

Dr. Marco Martina

Studies of people suffering from chronic pain have shown that depression and specific cognitive declines are associated with the condition. In humans, the prefrontal cortex is known to be important in higher-order cognitive and emotional functions, and a subsection, the medial prefrontal cortex, has been correlated with chronic pain, suggesting a pathological reorganization of this brain region. For the first time, research led by Marco Martina, MD, PhD, assistant professor of physiology at the Feinberg School, shows structural and functional changes in neurons and their dendrites induced by chronic pain in a rodent model.

Dr. Martina and colleagues examined neurons from the contralateral medial prefrontal cortex in a spared-nerve injury (SNI) model of chronic pain in rats. “It’s important to emphasize that the structure and function of the prefrontal cortex in rodents and primates do not exactly overlap,” says Dr. Martina. However, the changes they found in rodents correspond to the human brain region previously shown to be involved in back pain perception by A. Vania Apkarian, PhD, professor of physiology, and colleagues at Northwestern.

One week after surgery, the researchers compared neurons of SNI rats with those from a control group. Patch-clamp recording of electrical potentials and microscopic analysis of the neurons revealed striking differences. “The dendrites—branches that come out of the neuronal body—are longer, more complex, and have more spines on them,” explains Dr. Martina. “Functionally, the glutamatergic currents, particularly the NMDA current, which mediates most of the calcium entrance to the cell, are very strongly potentiated compared to the control animals.” NMDA is a receptor for glutamate, a common neurotransmitter in the brain. NMDA receptors are found on the spines of dendrites, which become more numerous in the chronic pain condition.

“Overall the dendritic and glutamatergic excitation of these neurons increases as a result of chronic pain,” continues Dr. Martina. “We examined these neurons only one week after surgery, yet we saw a very important rearrangement of the connectivity of the cortex. The bigger dendrites sample over larger areas in the brain, have more spines, and induce more currents. As far as we know, there has never been any demonstration of such changes at the single-cell level of the brain associated with chronic pain.”

The paper was published in the February 17 issue of the Proceedings of the National Academy of Sciences and was chosen as a “must read” by the Faculty of 1000, an online service for which more than 4,500 leading researchers and clinicians evaluate and highlight the most important articles in biology and medicine. “We don’t know yet if these rearrangements will lead to the same atrophy and loss of gray matter that were seen in the human studies, but we have experiments planned to find out.”

Another implication of these observations involves the mechanism behind chronic pain. The electrical activation patterns seen in the rodent prefrontal cortex in this research resemble the patterns scientists have observed in the hippocampus that are associated with memory. “It may be that you cannot ‘forget’ your pain,” speculates Dr. Martina. “This paper opens that path of inquiry. Today no scientifically validated treatment for chronic pain exists. Knowing that the glutamatergic system is affected constitutes the rationale for testing drugs that affect that system in the treatment of chronic pain.”

Share. Facebook Twitter Email

Related Posts

Mar 29, 2023

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

Lurie Cancer Center Receives Merit Extension from NCI

Oct 20, 2021

Drug Combination May Reduce Risk of Leukemia Relapse

Mar 26, 2020

Comments are closed.

Latest News

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

The Future of IgE-Mediated Allergy Research and Treatments

Mar 29, 2023

Weintraub Appointed to Illinois Supreme Court Commission on Elder Law

Mar 28, 2023

Investigating Protein’s Role in Hearing Loss

Mar 27, 2023

Sex-Specific Mechanisms for Major Depressive Disorder Identified in Response to Dysregulated Stress Hormones

Mar 23, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM651
20230317_NM610
20230317_NM569
20230317_NM537
20230317_NM331
20230317_NM323
20230317_NM316
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.