Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » New Compounds Effective Against Alzheimer’s Disease Onset and Progression
Uncategorized

New Compounds Effective Against Alzheimer’s Disease Onset and Progression

By medwebNov 1, 2004
Share
Facebook Twitter Email

New Compounds Effective Against Alzheimer’s Disease Onset and Progression

Drug discovery researchers at Northwestern University have developed a new class of compounds that have the potential to reduce the inflammation of brain cells and the neuron loss associated with Alzheimer’s disease.

The new class of compounds are aminopyridazines. The original compound, called MW01-070C, is used in an injectable form. More recently developed compounds, such as MW01-2-151WH and MW01-5-188WH, can be taken by mouth.

The compounds were designed and synthesized in the laboratory of D. Martin Watterson, PhD, John G. Searle Professor of Molecular Biology and Biochemistry and professor of molecular pharmacology and biological chemistry, Northwestern University’s Feinberg School of Medicine, using a synthetic chemistry platform developed by the Northwestern Drug Discovery Program for the rapid discovery of new potential therapeutic targets.

The aminopyridazines are targeted for the potential treatment of certain neurodegenerative diseases that are characterized by neuroinflammation and neuronal loss, such as Alzheimer’s disease, Parkinson’s disease, stroke, and traumatic brain injury. The compounds inhibit over-activation of glia, important cells of the central nervous system that normally help the body mount a response to injury or developmental change but are overactivated in certain neurodegenerative diseases.

The efficacy and safety of the compounds in an animal model of Alzheimer’s disease was evaluated in collaboration with Linda J. Van Eldik, PhD, professor of cell and molecular biology at the Feinberg School.

The scientists described their Alzheimer’s disease drug discovery efforts in recent issues of the Journal of Molecular Neuroscience and Neurobiology of Aging. The research results also will appear in early 2005 in the journal Current Alzheimer’s Research.

The studies have important implications for future drug development because they provide a proof of concept that targeting neuroinflammation with aminopyridazines is a viable Alzheimer’s disease drug discovery approach that has the potential to modulate disease onset and progression, Dr. Van Eldik said.

Deposition of the beta-amyloid plaques and neurofibrillary tangles of Alzheimer’s disease is associated with glial activation, loss of neurons, and decline of cognitive function.

Long-term or excessive activation of glia increases production of chemokines and cytokines, such as interleukin-1 beta (IL-1b), and oxidative stress-related enzymes, such as a highly active form of nitric oxide synthase (iNOS).

The excessive production of the inflammation-related substances can, in turn, contribute to further exacerbation of the disease process.

IL-1b is involved in glial inflammatory and neuronal dysfunction responses, and variants of the IL-1 gene are associated with increased risk for Alzheimer’s disease. The iNOS induced as a result of glial activation generates nitric oxide (NO), which can exist in toxic forms that damage neurons.

Therefore, development of new compounds that can modulate these disease-linked biological processes may represent alternative therapeutic approaches and lead to identification of new drug discovery targets, Dr. Van Eldik said.

Dr. Van Eldik and co-researchers found that the aminopyridazines inhibited both oxidative and inflammatory cytokine pathways and reduced human amyloid beta (Ab)-induced glial activation in a mouse specially designed to develop many of the hallmarks of Alzheimer’s disease pathology, including neuroinflammation, neuronal and synaptic degeneration, and amyloid deposits, often called plaques.

Inhibition of neuroinflammation correlated with a decreased neuron loss, restoration toward control levels of synaptic dysfunction biomarkers in the hippocampus, and diminished amyloid plaque deposition. Consistent with the pathology changes, treatment with the aminopyridazines also attenuated behavioral deficits in the mice that are due to injury in the part of the brain called the hippocampus, a region that is gradually destroyed in neurodegenerative diseases such as Alzheimer’s. The Northwestern investigators are now seeking to raise the funding necessary for testing in humans.

Collaborating with Drs. Watterson and Van Eldik on this research were Jeffrey M. Craft, a predoctoral student in the Drug Discovery Training Program, and Wenhui Hu, PhD, and Hantamalala Ranay Ranaivo, PhD, postdoctoral scholars in the Drug Discovery Training Program.

This research was supported by grants from the Institute for the Study of Aging, the Alzheimer’s Association, and the National Institutes of Health.

(Reprinted from Northwestern University News Center.)

Share. Facebook Twitter Email

Related Posts

Lurie Cancer Center Receives Merit Extension from NCI

Oct 20, 2021

Drug Combination May Reduce Risk of Leukemia Relapse

Mar 26, 2020

Rewriting the Role of a Transcription Factor

Mar 19, 2020

Comments are closed.

Latest News

Humans are Not Just Big Mice: Identifying Science’s Muscle-Scaling Problem

Mar 20, 2023

AOA Honors New Members

Mar 20, 2023

Celebrating Feinberg’s 2023 Match Day

Mar 17, 2023

Predicting Risk of Blood Clots in Brain Tumors

Mar 16, 2023

Understanding How Exercise Induces Systemic Metabolic Benefits

Mar 15, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
_5NM1245
230204_SERIO_MANDELL_Feinberg_Formal_0928
_5NM1715
_5NM0526
_5NM1026 (1)
_5NM1906
_5NM2173
230204_SERIO_MANDELL_Feinberg_Formal_0896
230204_SERIO_MANDELL_Feinberg_Formal_1113
230204_SERIO_MANDELL_Feinberg_Formal_1868
230204_SERIO_MANDELL_Feinberg_Formal_1237
230204_SERIO_MANDELL_Feinberg_Formal_1172

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.