Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Releases
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » A Little Stress May Be Good
Uncategorized

A Little Stress May Be Good

By medwebDec 1, 2003
Share
Facebook Twitter Email

December 16, 2003

Contact: Megan Fellman at (847) 491-3115 or at
fellman@northwestern.edu

A Little Stress May Be Good

EVANSTON, ILL.— We’ve often heard that red wine and dark chocolate in moderation can be good for you. Now it appears that a little stress may be beneficial too.

Northwestern University scientists have shown that elevated levels of special protective proteins that respond to stress in a cell (known as molecular chaperones) promote longevity. Acute stress triggers a cascading reaction inside cells that results in the repair or elimination of misfolded proteins, prolonging life by preventing or delaying cell damage.

The findings are published online by Molecular Biology of the Cell, a publication of the American Society for Cell Biology. The article will appear in the journal’s February 2004 print issue.

“Sustained stress definitely is not good for you, but it appears that an occasional burst of stress or low levels of stress can be very protective,” said Richard I. Morimoto, PhD, John Evans Professor of Biology, who co-authored the paper with lead author James F. Morley, a graduate student in Dr. Morimoto’s lab. “Brief exposure to environmental and physiological stress has long-term benefits to the cell because it unleashes a great number of molecular chaperones that capture all kinds of damaged and misfolded proteins.”

Stressors also include elevated temperatures, oxygen stress, bacterial and viral infections, and exposure to toxins such as heavy metals, all of which challenge the environment of the cell. A master protein called heat shock factor senses the stress and responds by turning on the genes that encode molecular chaperones.

Proteins are basic components of all living cells. To do its job properly, each protein first must fold itself into the proper shape. In this process, the protein is assisted by molecular chaperones that function to prevent misfolding, or, in the case of already misfolded proteins, to detect them and prevent their further accumulation. Mutations or environmental stress enhances protein damage. If misfolded or damaged proteins accumulate beyond a certain critical point, neurodegenerative diseases such as Huntington’s, Parkinson’s, Alzheimer’s, and Lou Gehrig’s diseases can result.

Dr. Morimoto and Morley studied C. elegans, a transparent roundworm whose biochemical environment is similar to that of human beings and whose genome, or complete genetic sequence, is known. The researchers found that when heat shock factor, the master gene that controls the expression of all chaperones, was underexpressed in adult animals, longevity was suppressed. When heat shock factor was overexpressed, lifespan increased. The results suggest that heat shock factor has significant beneficial effects to the organism as a whole.

“The heat shock response is identical in all life on Earth,” said Dr. Morimoto, who was the first to clone a human heat shock gene in 1985.

The research was supported by the National Institute of General Medical Sciences, National Institute of Neurological Disease and Stroke, Huntington’s Disease Society of America, and Daniel F. and Ada L. Rice Foundation.

Share. Facebook Twitter Email

Related Posts

Mar 29, 2023

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

Lurie Cancer Center Receives Merit Extension from NCI

Oct 20, 2021

Drug Combination May Reduce Risk of Leukemia Relapse

Mar 26, 2020

Comments are closed.

Latest News

Self-Powered Wireless Implant Delivers Medication, Then Dissolves

Mar 30, 2023

Adolescent Sexual Health Program Receives Funding for Social Marketing Campaign

Mar 29, 2023

The Future of IgE-Mediated Allergy Research and Treatments

Mar 29, 2023

Weintraub Appointed to Illinois Supreme Court Commission on Elder Law

Mar 28, 2023

Investigating Protein’s Role in Hearing Loss

Mar 27, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
20230317_NM651
20230317_NM610
20230317_NM569
20230317_NM537
20230317_NM331
20230317_NM323
20230317_NM316
20230317_NM336
20230317_NM626
20230317_NM662
20230317_NM655
20230317_NM642

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.