Feinberg
Northwestern Medicine | Northwestern University | Faculty Profiles

News Center

  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Menu
  • Categories
    • Campus News
    • Disease Discoveries
    • Clinical Breakthroughs
    • Education News
    • Scientific Advances
  • Press Release
  • Media Coverage
  • Podcasts
  • Editor’s Picks
    • COVID-19
    • Cardiology
    • Cancer
    • Neurology and Neuroscience
    • Aging and Longevity
    • Artificial Intelligence in Medicine
  • News Archives
  • About Us
    • Media Contact
    • Share Your News
    • News Feeds
    • Social Media
    • Contact Us
Home » New Device Removes Drinking Water Contaminants
Uncategorized

New Device Removes Drinking Water Contaminants

By medwebJun 1, 2002
Share
Facebook Twitter Email

June 20, 2002

Contact: Megan Fellman at (847) 491-3115 or at
fellman@northwestern.edu

New Device Removes Drinking Water Contaminants

EVANSTON, ILL.— A Northwestern University environmental engineer has received a U.S. patent for a treatment device that renders perchlorate—a thyroid-damaging ingredient of rocket fuel and a drinking water problem—harmless. The applications extend beyond the safety of drinking water and this one pollutant.

Bruce E. Rittmann, John Evans Professor of Environmental Engineering at the Robert R. McCormick School of Engineering and Applied Science, received U.S. Patent No. 6,387,262 for a hollow-fiber membrane biofilm reactor, that, through a natural biochemical process of electron transfer, turns perchlorate into innocuous chloride.

The cost-effective and environmentally friendly system also works on nitrate, a contaminant from agricultural fertilizers that can cause methemoglobinemia, or blue-baby syndrome, in infants, and is expected to be successful with other oxidized pollutants, such as bromate, selenate, heavy metals, radionuclides, and a range of chlorinated solvents, including trichloroethylene, a problem in the semiconductor industry.

Currently there is no effective clean-up solution for perchlorate, which was discovered in the water supplies of a large number of states in the late 1990s, and existing methods are not always successful when dealing with other contaminants.

“Many emerging pollutants are difficult to treat with conventional methods,” said Rittmann. “These methods do not destroy the contaminants but simply move them from place to place, from the water to a solid resin to a nasty brine that still contains the contaminants. Our simple method, which destroys the contaminant, should work for almost every oxidized pollutant, which means it has an incredible range of applications, including being used on more than drinking water.”

Rittmann has teamed up with the environmental engineering firm Montgomery-Watson-Harza Engineers, Inc. to conduct a pilot study in La Puenta, Calif., treating groundwater that is highly contaminated with perchlorate and nitrate. Results have shown that the biofilm reactor can effectively treat 0.3 gallons of water per minute, removing perchlorate and nitrate at the same time.

The decontamination process takes advantage of a community of microorganisms that lives as a biofilm on the outer surface of the membranes in the system. The microorganisms, found naturally, act as catalysts for the transfer of electrons from hydrogen gas to the oxidized contaminant, such as perchlorate or nitrate. Chemically speaking, the oxidized contaminants are eager to receive electrons, which reduces them to harmless products. The hydrogen gas supplies the electrons, and the biofilm microorganisms are the agents for the transfer.

A bundle of 7,000 hollow-fiber membranes are in one of the pilot-study biofilm reactors, a column approximately 5 feet tall and 18 inches in diameter. Each membrane is like a long, very thin straw, only 280 micrometers in diameter (the width of a thick sewing thread). Hydrogen gas is fed to the inside of the membrane fibers, and the hydrogen diffuses through the membrane walls into the contaminated water that flows past the fibers. At this meeting point, on the outside of the membrane, bacteria attach to the surface because they gain energy from the process of transferring electrons and can grow and thrive. The contaminants are reduced to harmless end products—perchlorate to chloride and nitrate to nitrogen gas—while the hydrogen gas is oxidized to water.

“We are exploiting nature,” said Rittmann. “Life is all about transferring electrons. We have an extraordinarily efficient system for bringing hydrogen and its electrons to oxidized pollutants, such as perchlorate, and reducing them to innocuous substances.”

Hydrogen gas is an ideal electron donor for biological drinking water treatment as it is non-toxic and inexpensive, and Rittmann’s system has been shown to be safe. Another advantage is that the performance of the reactor can be controlled simply by adjusting the pressure of the hydrogen gas.

Rittmann also is conducting research on the microbial ecology of the bioreactor system in order to understand how it works. Which microorganisms are doing the work? How fast do they work? How do they achieve the essential reaction of electron transfer?

“By looking at the details of what’s going on in the biofilms, we can make the system even more reliable and efficient in cleaning up some of the most dangerous and newly discovered contaminants in drinking water, ground water and wastewater,” said Rittmann.

The current research is supported by a grant from the U.S. Environmental Protection Agency and administered by the American Water Works Association Research Foundation.

Share. Facebook Twitter Email

Related Posts

Lurie Cancer Center Receives Merit Extension from NCI

Oct 20, 2021

Drug Combination May Reduce Risk of Leukemia Relapse

Mar 26, 2020

Rewriting the Role of a Transcription Factor

Mar 19, 2020

Comments are closed.

Latest News

Workshop Teaches Medical Students Diagnosis Skills in Dermatology

Feb 7, 2023

Genetic Variations Influence Drug Metabolism in Patients of African Descent

Feb 7, 2023

Potential Therapeutic Target for Schizophrenia Identified 

Feb 6, 2023

Longtime Alcohol Consumption Speeds Up Biological Aging 

Feb 3, 2023

Grant Provides Imaging Technology to Department of Ophthalmology

Feb 2, 2023
  • News Center Home
  • Categories
  • Press Release
  • Media Coverage
  • Editor’s Picks
  • News Archives
  • About Us
Flickr Photos
Feinberg_In_Vivo_20221209_tcrawford-24
Feinberg_In_Vivo_20221209_tcrawford-16
Feinberg_In_Vivo_20221209_tcrawford-14
Feinberg_In_Vivo_20221209_tcrawford-5
Feinberg_In_Vivo_20221209_tcrawford-6
Feinberg_In_Vivo_20221209_tcrawford-10
Feinberg_In_Vivo_20221209_tcrawford-8
Feinberg_In_Vivo_20221209_tcrawford-18
Feinberg_In_Vivo_20221209_tcrawford
Feinberg_In_Vivo_20221209_tcrawford-23
Feinberg_In_Vivo_20221209_tcrawford-25
Feinberg_In_Vivo_20221209_tcrawford-26

Northwestern University logo

Northwestern University Feinberg School of Medicine

RSS Facebook Twitter LinkedIn Flickr YouTube Instagram
Copyright © 2023 Northwestern University
  • Contact Northwestern University
  • Disclaimer
  • Campus Emergency Information
  • Policy Statements

Type above and press Enter to search. Press Esc to cancel.